
Algorithms for Private Data Analysis Spring 2021
Lecture 9: The Binary Tree Mechanism

Steven Wu

1 Query Release

The problem of releasing large numbers of counts, often somewhat inscrutably called linear query release
has been one of the central problems in di�erential privacy for many years [BCD+07], and has driven
many of the research questions and applications.

We’ll start with a dataset x = (x1, . . . ,xn) where each xi ∈ X. We’re interested in asking linear
queries, which are statistics of the form

f (x) =
n∑
i=1

φ(xi) for φ : X → {0, 1} (1)

As we’ve seen before, these queries capture statistics like “how many individuals in the dataset are
married adults age 64 and over?” We are interested in taking a large set of queries f1, . . . , fk and releasing
a table of answers a1, . . . ,ak such that

kmax
j=1

��aj − fj (x)
�� ≤ αn (2)

Note that the way we’ve constructed this set of queries, if we let F : Xn → Rk be the function that takes
x and outputs a vector of answers to every query, then the global sensitivity of F is never more than
k , so we can answer every query using Laplace noise with scale 1

εk . By our standard analysis of the
Laplace distribution, doing so will guarantee error αn = O(1εk logk). This is a baseline we can always
start with for any query release problem.

However, we can often do considerably better! One example where we’ve already seen this is
histograms, which is a set of k statistical queries that we can answer with error O(1ε logk) using the
fact that the queries have a special structure that makes their global sensitivity just 2 instead of k . But
histograms are by no means the only example, and there are many clever algorithms for releasing large
sets of queries, even when their global sensitivity is not small. In this lecture, we’re going to focus on
one simple, but surprisingly rich example a query release problem, involving threshold queries.

2 Answering Interval Queries

So far we’ve seen “straightforward” approaches to achieving di�erential privacy based on computing
the global sensitivity ∆ of some statistic f and adding noise proportional to ∆. In this lecture we’ll
take a look at an important example of a statistic—threshold queries—where we can come up with a
more “clever” approach that allows us to add considerably less noise than the global sensitivity. This
example is both important in its own right, and also a prelude to many other powerful and surprising
di�erentially private algorithms that we’ll see later in the course.

1

2.1 Interval Queries

Suppose we’re given a dataset x = (x1, . . . ,xn) where each user’s data is a number xi ∈ {1, . . . ,D}.
We’ll use the notation [D] = {1, . . . ,D} for convenience. For t ∈ [D], we can de�ne a threshold query
that asks for the number of users whose data is xi ≤ t . The vector of interval queries is a function
Φ : [D]n → R(

D
2) that asks for the answer to fs,t for every pair 1 ≤ s ≤ t ≤ D. Speci�cally,

fs,t (x) = # {i : s ≤ xi ≤ t} (3)
F (x) = (fs,t (x))1≤s≤t ≤D (4)

These queries are useful for many applications, and capture natural statistical quantities like the
cumulative distribution function and quantiles of the data. The cumulative distribution function is simply
the function Φ : [D] → R de�ned by

Φ(t) = # {i : xi ≤ t} (5)

and the q-quantile of the data is just the number t such that Φ(t) = qn, or Φ−1(qn).1 In particular, the
median is just the 1/2-quantile of the data, or t such that Φ(t) = n/2. Threshold queries are also called
range queries in the �eld of databases.

Baseline: The Laplace Mechanism. Since threshold queries are a set of
(D
2
)

count statistics, the
global `1-sensitivity of F is ∆ ≤

(D
2
)
= O(D2). Thus we can answer these queries by sampling Laplace

random variables Zs,t independently, with scale λ =
(D
2
)
/ε , for every 1 ≤ s ≤ t ≤ D, and returning

as,t = fs,t (x) + Zs,t for each query. Using our bounds on the Laplace distribution,

E

(
max

1≤s≤t ≤D

��as,t − fs,t (x)
��) = O (

D2 logD
ε

)
(6)

and this bound on the sensitivity is tight up to a constant factor.

Exercise 2.1. Prove that the global `1 sensitivity of F is Ω(D2).

A Simple Improvement. Just to see why answering every query with independent Laplace noise
is not the best possible algorithm, suppose we only answered the set of D queries f1,t for 1 ≤ t ≤ D.
Since there are now only D queries, we can answer each of these queries with expected maximum
error O(1εD logD), which is a big improvement over before. However, now that we have an answer
a1,t ≈ f1,t (x) for every t , we can get an answer

as,t = a1,t − a1,s−1 ≈ fs,t (x) (7)

for every query 1 ≤ s ≤ t ≤ D. Taking the di�erence between two noisy answers can increase the error
by at most a factor of 2, so we still answer all interval queries with error O(1εD logD)! One important
thing to note about this approach is that, the overall result is a correlated distribution of the noise over
all

(D
2
)

queries. In principle we could have just come up with this complex distribution over
(D
2
)

from
scratch, it’s a lot easier to come up with this distribution by add independent noise to the subset of the
queries and then obtaining the correlated noise by recombining the answers.

This example may seem almost trivial, but it identi�es a crucial strategy that we’re going to see both
in the binary tree mechanism and later in the course:

1Strictly speaking, since the data is discrete, Φ wont be continuous, and we need to rede�ne the quantiles a bit more
generally, but it’s not hard to come up with a reasonable way to do so.

2

Try to answer an easier set of queries and recover the answers to the queries you want!

In this example, the easy set of queries was just a subset of all the queries we were interested in. Although
we won’t see any example in this lecture, in general the easy set of queries can be completely di�erent
from the queries we actually want to answer.

2.2 The Binary Tree Mechanism

Next we’re going to see an even better way to reduce the noise for answering interval queries, that
reduces the error exponentially to O(1ε log

3 D). As before, the idea is to only answer a carefully chosen
subset of all the interval queries that simultaneously has two properties:

• The sensitivity of answering all the queries in the subset is small.

• We can reconstruct the missing queries by combining a small number of the queries in this subset.

For comparison, in the simple improvement above, the sensitivity was D and the number of queries we
had to combine to reconstruct was 2. Now we’re going to see an even better subset where the sensitivity
drops all the way down to O(logD) and the number of queries to reconstruct goes up just a bit but is
still O(logD). As we’ll see, this balancing act gives a much better overall guarantee on the error.

The resulting mechanism is often called the binary tree mechanism, and it was discovered a few
di�erent times in di�erent contexts [DNPR10, CSS11].

For convenience, let’s assume D is a power of 2 so that log2 D is an integer. If this isn’t the ase we
can just increase D until it’s a power of 2, which can increase the size of the domain by a factor of at
most 2, and wont change the �nal error bound signi�cantly. The interval queries we’ll include in our
subset are going to be all the intervals of length 1, f1,1, f2,2, . . . , fD,D as well as all consecutive intervals
of length 2, f1,2, f3,4, . . . , fD−1,D as well as all consecutive intervals of length 4, f1,4, f5,8, . . . , fD−3,D and
so on for lengths 1, 2, 4, 8, . . . ,D until we have just a single interval f1,D . It’s much easier to understand
the mechanism if we visualize the set of intervals we’re choosing as a binary tree, where the integers
1, . . . ,D are at the leaves, and every node represents an interval consisting of the union of its two
children.2 To help with the analysis, we’ll use T to denote the set of intervals contained in the tree.
Formally,

T =
{
(u,v) : u = j · 2`−1 + and v = (j + 1) · 2`−1 for 1 ≤ ` ≤ log2 D and 1 ≤ j ≤ D/2`−1

}
(8)

although it’s much easier to look at the picture in Figure 1.
Note that the tree has log2 D levels and each level has D/2` nodes, so

|T | =

log2 D∑̀
=1

D

2`−1
= 2D − 1

Thus, just looking at the size of T doesn’t tell us that these queries have low sensitivity. However, the
key property of the binary tree is that if we add a user with data xi = t , then it only changes the value
of the intervals in the tree that are ancestors of the leaf t , and there are exactly log2 D of these! We can
formalize this idea with the following claim.

Claim 2.2. The global sensitivity of FBT (x) = (fu,v (x))(u,v)∈T is at most 2 log2 D.
2In practice we actually get better bounds using a shallower tree with a larger branching factor, but it wont make any

di�erence for the O(·) analysis.

3

Figure 1: A diagram showing the queries in T for the domain D = 8. The highlighted squares represent
the interval {1, . . . , 7} and the highlighted circles show the decomposition of this interval into a union
of three intervals in T .

Proof. If we change one datapoint from xi to x ′i then we reduce the answer to all queries that are
ancestors of xi in the binary tree and increase the answer to all queries that are ancestors of x ′i . Since
every leaf in the tree has d ancestors, the total number of queries that can change is at most 2 log2 D.
Thus the change to the whole vector of queries in `1 is at most 2 log2 D. �

Claim 2.2 means that we can release every query ε-DP by adding Laplace noise with scale λ = 2 log2 D
ε

to each coordinate of FBT . Thereby we obtain

au,v = fu,v (x) + Zu,v Zu,v ∼ Lap
(
2
ε
log2 D

)
(9)

for every (u,v) ∈ T , where the random variables Zu,v are independent. By our standard analysis of the
Laplace distribution we also have

E

(
max
(u,v)∈T

|Zu,v |

)
=

2 log2(D)(ln(2D − 1) + 1)
ε

= O

(
1
ε
log2 D

)
(10)

Recovering the Answers. So far we have managed to answer all of the interval queries contained
in T with expected maximum error O(log2(D)/ε). For example, if we want to answer the threshold
query f5,8, then we can just look up

f5,8(x) ≈ a5,8 (11)

and get an accurate answer.
But what if we want to obtain, say, f1,7(x), which is the number of individuals whose data xi is at

most 7? This isn’t one of the intervals in the tree, but we can reconstruct it by combining three di�erent
intervals. The key idea is to write the interval {1, . . . , 7} as a union of intervals that are contained in
the binary tree, speci�cally

{1, 2, 3, 4, 5, 6, 7} = {1, 2, 3, 4} ∪ {5, 6} ∪ {7} (12)

4

Thus, we can reconstruct an approximate answer to f7(x) from the output of the binary tree as follows

f1,7(x) = f1,4(x) + f5,6(x) + f7,7(x) ≈ a1,4 + a5,6 + a7,7 (13)

Note that since we are summing up three di�erent noisy answers, we might get three times as much
noise, but as long as we don’t have to sum too many noisy, we won’t increase the noise by too much.
Let’s see how we can do this for any threshold query f1,t . Note that we also want answers to queries
fs,t , but as we’ve seen we can obtain those as the di�erence fs,t = f1,t − f1,s−1.

The key claim is that for any threshold query f1,t , we can write it as the sum of at most log2 D
intervals in the set T .

Claim 2.3. For every 1 ≤ t ≤ D, there exists S ⊆ T of size |S| ≤ log2 D such that

f1,t (x) =
∑
(u,v)∈S

fu,v (x).

Exercise 2.4. Prove Claim 2.3

By the claim, for every interval query f1,t , for 1 ≤ t ≤ D, we can compute

f1,t (x) =
∑
(u,v)∈S

fu,v (x) ≈
∑
(u,v)∈S

au,v (14)

Now let’s see why the error will be small for every query. Let b1,t
∑
(u,v)∈S au,v be the noisy answer we

recover for ft (x). Then for every threshold 1 ≤ t ≤ D we have

��b1,t − f1,t (x)
�� = ������ ∑

(u,v)∈S

au,v − f1,t (x)

������ =
������ ∑
(u,v)∈S

Zu,v

������
≤

∑
(u,v)∈S

|Zu,v |

≤ |S| · max
(u,v)∈T

|Zu,v |

≤ log2 D · max
(u,v)∈T

|Zu,v |

Therefore we also have

E

(
max
1≤t ≤D

��b1,t − f1.t (x)
��) ≤ E (

log2 D · max
(u,v)∈T

|Zu,v |

)
= O

(
1
ε
log3 D

)
(15)

where we have used the fact that E
(
max(u,v)∈T |Zs,t |

)
= O(1ε log

2 D). Remember that we can get answers
bs,t for 1 ≤ s ≤ t ≤ D by taking bs,t = b1,t − b1,s−1.

Lastly, since any interval query дs,t (x) can be written as ft (x) − fs (x), we can answer all
(D
2
)

interval
queries with (at most) twice the error as we get for all the threshold queries.

We can summarize with the following theorem

Theorem 2.5. There is an ε-DP mechanism that answers all
(D
2
)
interval queries over the universe

{1, . . . ,D} such that

E

(
max

1≤s≤t ≤D

��fs,t (x) − bs,t ��) = O (
1
ε
log3 D

)
5

A few more notes about this theorem are in order:

• The analysis we did was a bit loose, in particular in the step where we wrote |
∑
Zu,v | ≤

∑
|Zu,v |.

That is, since the signs of each Zu,v are random and independent, the sum should be more like
(
∑
Z 2
u,v)

1/2 rather than
∑
|Zu,v |, and the former will typically be much smaller. The overall e�ect

of a more careful analysis would be to get error more like O(1ε log
2.5 D).

• Our reconstruction procedure is actually not the only way to reconstruct the answers! In fact, the
binary tree contains multiple ways of estimating a threshold ft (x). For example,

f6 = д1,4 + д5,6 = д1,8 − д7,8.

By combining the di�erent estimates we can improve the error signi�cantly in practice [Hon15].

• The true answers to threshold queries f1,t are monotonic, meaning t ≤ t ′ implies ft (x) ≤ ft ′(x).
However, because of noise, the reconstruction procedure might give answers that are not monotone.
However, since di�erential privacy is closed under post-processing, we can take the answers
a1, . . . ,aD and replace them with a new set of answers ã1, . . . , ãD that are monotone and are as
close as possible to a1, . . . ,aD . Not only will this result in a set of plausibly correct answers, it
will actually reduce the overall error signi�cantly! This phenomenon arises in many settings, and
was (perhaps?) �rst explicitly studied in [HRMS10].

One �nal thought is that this is probably the most “clever” algorithm that we’ve seen so far, and
it’s worth emphasizing that there are many interesting di�erentially private algorithms, even for very
simple looking problems, and surely many more yet to be discovered!

2.3 The Role of the Domain Size

One other thing that deserves mention is the role of the domain size D. Often D is not actually given to
us, but rather something we choose. For example, if the data consists of arbitrary bounded real numbers
xi ∈ [0,B] then we might choose to discretize the data by rounding it to the nearest integer value in
{0, 1, . . . ,B}, so that we can apply the binary tree mechanism with D = B + 1. The rounding will also
introduce some error, and this error may or may not be signi�cant depending on the nature of the data
itself. For example, if all of the actual data lies between 10 and 11, then rounding will detroy all of
the information in the dataset. Thus, perhaps we will choose to discretize to multiples of some small
parameter γ , in which case we’ll have D = B/γ + 1, which will reduce the error from rounding but also
increase the error from the binary tree mechanism. Finding the optimal way to discretize data to apply
the binary tree mechanism is tricky, and can’t be done without some prior knowledge of what the data
looks like.

A natural question is whether we really have to discretize the data at all? Perhaps we can just use a
domain of all real numbers, or take D to be so large that it captures every number a real computer can
represent? The answer turns out to be quite complex. There are many more algorithms for threshold
queries with improved error, notably [DNRR15, BNS13]. These best of these gives a strange looking
error bound of about 1

ε (log
∗ D)3/2 [KLM+20], although these algorithms are not currently practical.

Given that the iterated logarithm function3 log∗ D grows with D so slowly, you would be tempted to
3The function log∗ D is the iterated logarithm function, and is de�ned by the recurrence log∗ D = log∗(logD) + 1 with the

base case log∗ D = 0 for D ≤ 1. It’s the number of times you hit the log button on your calculator, starting from D, before the
answer is smaller than 1. Technically log∗ D →∞ as D →∞, but for any number you can dream up, it’s at most 6.

6

think that surely there is a solution with error independent of D, or even one that works for data over
the in�nite domain of all real numbers. However, you’d be wrong, and any algorithm for answering
interval queries requires error Ω(log∗ D) [BNSV15]!

Acknowledgement. This lecture note is built on the course material developed by Adam Smith and
Jonathan Ullman.

References

[BCD+07] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry, and Kunal
Talwar. Privacy, accuracy, and consistency too: a holistic solution to contingency table
release. In Proceedings of the 26th Annual ACM Symposium on Principles of Database Systems,
PODS ’07, 2007. ACM.

[BNS13] Amos Beimel, Kobbi Nissim, and Uri Stemmer. Private learning and sanitization: Pure
vs. approximate di�erential privacy. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, RANDOM-APPROX ’13. Springer, 2013.

[BNSV15] Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil Vadhan. Di�erentially private release and
learning of threshold functions. In IEEE 56th Annual Symposium on Foundations of Computer
Science (FOCS), 2015.

[CSS11] T-H Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics.
ACM Transactions on Information and System Security (TISSEC), 14(3):26, 2011.

[DNPR10] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Di�erential privacy
under continual observation. In Symposium on Theory of Computing (STOC). ACM, 2010.

[DNRR15] Cynthia Dwork, Moni Naor, Omer Reingold, and Guy N Rothblum. Pure di�erential privacy
for rectangle queries via private partitions. In International Conference on the Theory and
Application of Cryptology and Information Security, ASIACRYPT ’15. Springer, 2015.

[Hon15] James Honaker. E�cient use of di�erentially private binary trees. 2015. https://hona.
kr/papers/files/privatetrees.pdf.

[HRMS10] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the accuracy of
di�erentially private histograms through consistency. Proceedings of the VLDB Endowment,
3(1), 2010. https://arxiv.org/abs/0904.0942.

[KLM+20] Haim Kaplan, Katrina Ligett, Yishay Mansour, Moni Naor, and Uri Stemmer. Privately
learning thresholds: Closing the exponential gap. In Conference on Learning Theory, COLT
’20. PMLR, 2020. https://arxiv.org/abs/1911.10137.

7

https://hona.kr/papers/files/privatetrees.pdf
https://hona.kr/papers/files/privatetrees.pdf
https://arxiv.org/abs/0904.0942
https://arxiv.org/abs/1911.10137

