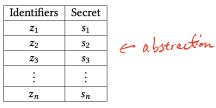
Lecture 3. Reconstruction Attacks. (Part 2) - Recap on linear reconstruction attacks. Reconstruction Attacks w/ less queries
 Computationally
 More - efficient attacks - Reconstruction Attack in practice. (Reading)

Logistics: Office Hour Friday 9-20 an est Music : What to play before class?

Linear Reconstruction Attack

• Introduced by Dinurk Nissim in 2003

Name	Postal Code	Age	Sex	Has Disease?
Alice	02445	36	F	1
Bob	02446	18	М	0
Charlie	02118	66	М	1
÷	÷	:	:	÷
Zora	02120	40	F	1
				\sim
Z : identifiers				Secret bi



Release count statistics: # people satisfy some property
• How many people are older than 40 & have secret bit =1?

$$f(X) = \sum_{j=1}^{2} P(Z_j) S_j$$
 for some $Q: Z \mapsto \{0,1\}$
 $f(X) = (Q(Z_1), Q(Z_2), \dots, Q(Z_n)) \cdot (S_1, \dots, S_n)$
bit vector $\in \{0,1\}^n$ Secret bits

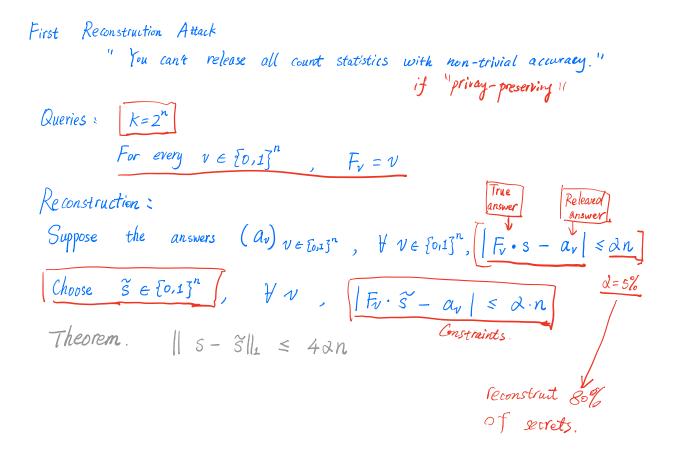
Releasing K linear Statistics

$$\begin{array}{l} \text{Released} \\ \text{Statistics} \begin{bmatrix} f_{1}(X) \\ \vdots \\ f_{k}(X) \end{bmatrix} = \begin{bmatrix} \mathcal{P}_{2}(\mathbb{Z}_{3}) & \cdots & \mathcal{P}_{1}(\mathbb{Z}_{n}) \\ \vdots & & & \\ \mathcal{P}_{k}(\mathbb{Z}_{1}) & \cdots & \mathcal{P}_{k}(\mathbb{Z}_{n}) \\ \end{bmatrix} \xrightarrow{f} \\ \begin{array}{l} \text{Secret bits} \\ \text{Sh} \end{bmatrix} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \text{Sh} \\ \begin{array}{l} \text{Sh} \\ \text{Sh} \end{bmatrix} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \text{Sh} \\ \text{Sh} \end{bmatrix} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \text{Sh} \\ \begin{array}{l} \text{Sh} \\ \text{Sh} \end{bmatrix} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \text{Sh} \\ \begin{array}{l} \text{Sh} \\ \text{Sh} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\ \begin{array}{l} \text{Sh} \\ \end{array} \xrightarrow{f} \\ \end{array} \xrightarrow{f} \\$$

Examples :

 $\mathcal{C}_1(Z_j) = I : Z_j$ is older than 40

- $\mathscr{C}_{2}(\mathbb{Z}_{j})=1$: \mathbb{Z}_{j} is older than 40 and male $\mathscr{C}_{3}(\mathbb{Z}_{j})=1$: \mathbb{Z}_{j} is older than 20 and male

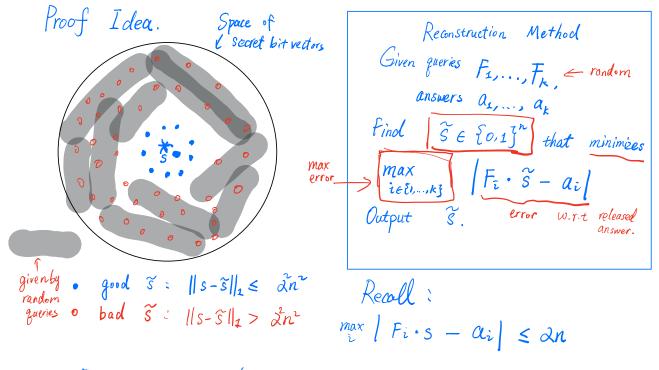


Theorem. If all 2^n counts are within 2n error, then $5, \tilde{5}$ clisagree on $\leq 42n$ bits. < 20%

Reconstruction Using Fewer Queries # Released Statistics << 2^{n} . linear in nAttack: Choose [K=20n] random $\{i: Z \mapsto \{0,1\}$, $\forall i \in [K]$. $\implies k$ random vectors/queries $F_{i} \in \{0,1\}^{n} \leftarrow each b_{i}t$ Suppose that answers $: \forall i \in [K]$, $|F_{i} \cdot s - a_{i}| \leq 2n$ Find $\Im \in \{0,1\}^{n}$ such that: $\forall i \in [K]$, $|F_{i} \cdot \Im - a_{i}| \leq 2n$

Theorem . $|| S - \tilde{S} ||_1 \leq 256 \alpha^2 n^2$. with high probability

Theorem. If we ask
$$O(n)$$
 random queries $F \in \{0,1\}^n$
and all considers have error $\leq an$,
then reconstruct \Im such that $||S - \Im|_A \leq O(a^2 n^2)$.
Implication \longrightarrow
 $dn \ll \sqrt{n}$, then reconstruct a linear fraction of S.
 $d = 10^{7_0}$ $dn \leq q \frac{\sqrt{n}}{10}$ Claim: $\sqrt{n} \approx \text{ sampling error.}$
 $(an)^2 = \frac{n}{100}$



5 is arbitrary placeholder.

Proof Idea.
Proof Idea.
Reanstruction Method
Given gueries
$$F_1, \ldots, F_k$$
,
answers a_1, \ldots, a_k
Find $\tilde{s} \in \{0,1\}^n$ that minimizes
 $\max_{i \in 0, \ldots, k_j} |F_i \cdot \tilde{s} - a_i| > 2n$
(\tilde{s} is eliminated by F_i)
For every bod \tilde{s} ,
some random query eliminates \tilde{s} with high probability.

Proof.
Proof.

$$P(\exists \text{ some ball } \tilde{S} \text{ not eliminated})$$

 $\leq \sum_{bad} \frac{p[\tilde{S} \text{ not eliminated})}{p[\tilde{S} \text{ not eliminated}]}$
 $P[\tilde{S} \text{ not eliminated}]$
 $= P[[\forall i, \tilde{S} \text{ is not eliminated}]$
 $\leq p[[\forall Fi: \tilde{S} - Fi: \tilde{S}] \leq 4\partial n]^{k}$
 $\leq \frac{q}{p}$
 $K = 20 n.$

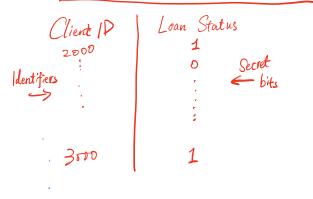
Efficient Reconstruction.

Reconstruction Method Given queries F_1, \ldots, F_k , linear in n answers a_1, \ldots, a_k a_k a	Linear Programming $\max_{C \cdot X} C \cdot X \leftarrow \text{Linear.}$				
Find $\tilde{S} \in \{0, 1\}^n$ that minimizes max $i \in \{1, \dots, k\}$ Output \tilde{S} . $F_z \cdot \tilde{S} - a_i$ f_z f	S.t. $\forall i \in [k], \forall i \cdot x \leq bi$ Can solve in polyronial time.				
Approximation: Replace $\hat{S} \in [0,1]^n \rightarrow linear Program. (HW?)$ Round $\hat{S} \rightarrow \tilde{S} \in [0,1]^n$					

Attacking Diffix

private analytics product by Aircloak Check out the Diffix Challenge !

SELECT COUNT(*) FROM loans WHERE loanStatus = 'C' AND clientId BETWEEN 2000 and 3000



SELECT COUNT(*) FROM loans
WHERE loanStatus = 'C'
AND (clientId = 2007
OR clientId = 2018
...
OR clientId = 2991)

Count query loan Status (iD) N Add noise to answer according to "effective length" $\rightarrow \mathcal{S}(\mathcal{J}_n)$

Attack by Kobbi Nissim & Aloni Cohen 2018.

SELECT COUNT(clientId) FROM loans
WHERE FLOOR(100 * ((clientId * 2)^.7))
= FLOOR(100 * ((clientId * 2)^.7) + 0.5)
AND clientId BETWEEN 2000 and 3000
AND loanStatus = 'C'

· "Random" Aueries

Small length.

Dick- Joseph-Schutzman. 2020.