
 

Lecture 24

Adaptive Data Analysis ADA

Reusable Holdout

Sparse Vector Mechanism SVM

Application Synthetic Data for ADA



Logistics

Today is the last day of me lecturing

Weds Additional Office Hour for Projects
Fri Continue officeHour

Next Week Project Presentation

Schedule also on Canvas

May 3rd May 5th

Ryan Steed Charlie Hou

Shangguan Hu Zhili Feng
Justin Whitehouse Shuaiqi Wang
Tianshui Li

Formati
Expect slides

20 minutes including Q A

Final Write up due later



Model for Adaptive Data Analysis

Statistical Linear Queries
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Interaction of Adaptive Data Analysis
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Transfer Theorem E 8 version JLNRS.su

Suppose ICMA D is a p sample accurate
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Gaussian Mechanism V S Sample Splitting
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Can we do better

Output Compression sparse Vector

SV Private Multiplicative Weights
Synthetic Data Method



Model for ADA

in
Mini

IT ICHAD

Gj can depend on

fi a fr Ar 821AjD

below

Mean F7s FEH dP
below

Fred D
interactions abor

Example i f In II EICH A

Reusable Holdout



Sparse Vector

Input an adaptive sequence faffz
G sensitive

Dataset D Threshold T
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Accuracy

Given fe Gz
Return be.bz

Empirical Error

If bi Below max fo G D T
Want tobe small

If bi Above max o T film
Wantsmall

Theorem With probability 1 B when run over a sequence

of K queries SU has empirical error
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Error scale logarithmically in k

Proof Sketch Union Bound Laplace Noise 124

Composing m runs of SV
Population error Max fo Gill T for Below

Want tobe small

max o T fi for Above
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Empirical error Generalization error
Transfer for answering for Efm 8 DPTheorem K queries in total
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Privacy

Theorem SparseVector is CEO DD

Proof Sketch

Fix any neighbors D D

any output t T

Given the output fee q are also fixed

Furthermore fix noise values
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Private Multiplicative Weights PNW
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Sample Complexity Accuracy

Non adaptive Queries

Take empirical averages Aj G D

may lay 8 1 E

Adaptive Queries

Sample Splitting Methods De Dk age847g
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dimension ofdata

Lower Bound Statement



If either the algorithm is polytime Cd
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