Lecture 20

Local Model of Differential Privacy

- Randomized Response
- Mean Estimation
$\left.\begin{array}{l}\text { - Frequency Estimator } \\ \text { - Heavy Hitters } \downarrow \downarrow\end{array}\right\} \begin{aligned} & \text { Connection } \\ & \text { Sublinear Algorithms }\end{aligned}$ Histogram

Next : Connections between
Module
(1) Adaptive Data Analysis
(2) "Robustness" $\left\{\begin{array}{l}\text { Mechanism Design } \\ \text { Adversarial example } \\ \cdots\end{array}\right.$
(3) Practical Deployments $\left\{\begin{array}{l}\text { local DP. } \\ \text { US Census. 2020. }\end{array}\right.$

Last
Module icel of May : Project Presentation

Central Model

Trust barrier.

Local Model

Trust barrier

Has worse accuracy,

Mean Estimation

$$
x_{1}, x_{2}, \ldots, x_{n} \in\{0,1\}
$$

$$
Y_{i}=x_{i}+\operatorname{lap}\left(\frac{1}{\varepsilon}\right)
$$

Mean $\mu=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
Central Model

$$
\begin{aligned}
& \hat{\mu}_{\text {Lap }}=\frac{1}{n} \sum_{i=1}^{n} x_{i}+\operatorname{Lap}\left(\frac{1}{\varepsilon n}\right) \\
& \left|\hat{\mu}_{\text {Lop }}-\mu\right| \leqslant O\left(\frac{1}{\varepsilon n}\right) \text { w.p. } 9 q \%
\end{aligned}
$$

$$
\begin{aligned}
& \text { Local Model. } \\
& \text { Randemized respanse. (Wamer' } 65 \text {) } \\
& Y_{i}=\left\{\begin{array}{cc}
x_{i} & \text { w.p. } \frac{e^{\varepsilon}}{1+e^{\varepsilon}} \\
1-x_{i} & \text { w.p. } \frac{1}{1+e^{\varepsilon}}
\end{array}\right. \\
& \hat{\mu}_{R R}=\frac{1}{n} \sum_{i}\left(\frac{e^{e}+1}{e^{\varepsilon}-1} r_{i}-\frac{1}{e^{e}-1}\right)
\end{aligned}
$$

By Chernoff Pound,

$$
\left|\hat{\mu}_{R R}-\mu\right| \leqslant O\left(\frac{1}{\varepsilon \sqrt{n}}\right)
$$

for $\varepsilon \leqslant 1$.
Local Randomizer $M: X \mapsto Y$
is ($\varepsilon, \delta)$-localy differentialy private (LDP) if

$$
\begin{aligned}
& \forall \underbrace{\forall x x^{\prime} \in X, \quad E \subseteq Y} \mathbb{P}[M(x) \in E] \leq e^{\varepsilon} \mathbb{P}\left[M\left(x^{\prime}\right) \in E\right]+\delta .
\end{aligned}
$$

Dabsect of size 1 .
$(\varepsilon, \delta)-D P$ in the Central $\Longrightarrow(\varepsilon, \delta)-\angle D P$ that makes for size-1 dateret \longrightarrow LR.

Local Model : ($\varepsilon, 0$) EDP U.S. ($\varepsilon, \delta)$-LDP?

Mean Estimation

$$
\begin{aligned}
& x_{1}, x_{2}, \ldots, x_{n} \in[0, m] \\
& \mu=\frac{1}{n}=x_{i}
\end{aligned}
$$

Central Model

$$
\begin{aligned}
& \hat{\mu}=\frac{1}{n} \sum_{i} x_{i}+\operatorname{Lap}\left(\frac{m}{n \varepsilon}\right) . \\
& |\hat{\mu}-\mu| \leqslant O\left(\frac{m}{n \cdot \varepsilon}\right)
\end{aligned}
$$

Sample Complexity for err $\leqslant 2$

$$
n \geqslant \frac{m}{\alpha \varepsilon}
$$

Local Model.

$$
\begin{aligned}
& Y_{i}=x_{i}+\operatorname{Lap}\left(\frac{m}{\varepsilon}\right) \\
& \hat{\mu}=\frac{1}{\pi} \sum_{i} Y_{i} \\
& \begin{aligned}
|\hat{\mu}-\mu| & =\left(\left.\sum_{i} \operatorname{Lap}\left(\frac{m}{\varepsilon}\right) \right\rvert\,\right. \\
& \approx O\left(\frac{m}{\sqrt{n} \varepsilon}\right)
\end{aligned}
\end{aligned}
$$

Sample Complexity

$$
n \geqslant \frac{m^{2}}{\varepsilon^{2} \alpha^{2}}
$$

Comisuruction Issues?
$\Omega(\log (m))$ bits of communication

1-bit communication.

$$
x_{i} \in[0, m], \quad Y_{i}=\left\{\begin{array}{ccc}
1 & \text { w.p. } \\
0 & \text { o.w. } & \frac{1}{e^{\varepsilon}+1}+\frac{x_{i}}{m} \cdot \frac{e^{\varepsilon}-1}{e^{\varepsilon}+1} \\
\mathbb{E}\left[Y_{i}\right]
\end{array}\right.
$$

Estimator: $\hat{\mu}=\frac{m}{n} \sum_{i=1}^{n} \frac{r_{i}\left(e^{\varepsilon}+1\right)-1}{e^{\varepsilon}-1}$

$$
\begin{aligned}
\mathbb{E}[\hat{\mu}]= & \frac{m}{n} \sum_{i=1}^{n} \frac{\mathbb{E}\left[\zeta_{i}\right]\left(e^{\varepsilon}+1\right)-1}{e^{\varepsilon}-1} \\
= & \frac{m}{n} \sum_{i=1}^{n} \frac{\left(\frac{\left|\overline{e^{2}+1}\right|}{}+\frac{x_{i}}{n} \cdot \frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}\right)\left(e^{e}+1\right)-1}{e^{e}-1} \\
= & \frac{1}{n} \sum_{i=1}^{n} x_{i} \\
& |\hat{\mu}-\mu| \leqslant O\left(\frac{m}{\varepsilon \sqrt{n}}\right) \quad \text { w.p. } 99 \% .
\end{aligned}
$$

$$
=\frac{m}{n} \sum_{i=1}^{n} \frac{\left(\left|\frac{1}{\mid e^{e}+1}\right|+\frac{x_{i}}{m} \cdot \frac{e^{e}-1}{e^{\varepsilon}+1}\right)\left(e^{e}+1\right)-1}{e^{e}-1} \rightarrow \frac{\left(e^{e}-1\right) x_{i}}{m}
$$

for α-accuray, $n \geqslant \frac{m^{2}}{\alpha^{2} \varepsilon^{2}}$

$$
\text { " Implemented Windows" Ding K Y' } \quad \text { MSR. }
$$

Frequency Estimation
$x_{1}, \ldots, x_{n} \in[d] \quad\{1, \ldots ., d\} \quad$ Think d as "large"
$\forall x \in[d]$
$f(x)=\sum_{i=1}^{n} \mathbb{I}\left[x_{i}=x\right]$.
$|f(x)-\hat{f}(x)| \leqslant \alpha$.
Central Model.
$\forall x$,

$$
\hat{f}(x)=f(x)+\operatorname{Lap}\left(\frac{2}{\varepsilon}\right)
$$

 dote universe.

Local Model.
$x_{i} \in[d] \quad x_{i}=\underbrace{\underbrace{000 \cdots 10 \cdots 0}_{i-\text {-corticate }}}_{\text {length } d .}$
\downarrow Local Randomizes

$$
\begin{aligned}
& b_{i}=\begin{array}{llll}
1 & -1 & \cdots & -11 \\
\hline
\end{array} \\
& x_{i j}=0, \quad b_{i j}=\left\{\begin{array}{lll}
1 & \text { wis } \\
-1 & \text { up } \frac{1}{2}
\end{array}\right. \\
& x_{i j}=1, \quad b_{i j}=\left\{\begin{array}{cc}
1 & \text { waR. } \\
-1 & \text { w. } \\
-\frac{\varepsilon}{2} \\
\frac{1}{2}-\frac{\varepsilon}{2}
\end{array}\right. \\
& \hat{f}=\left(\bar{\sum}_{i} b_{i}\right) \cdot \frac{1}{\varepsilon} \\
& \begin{aligned}
\hat{f}(x) & =\underbrace{\left(\sum_{i=\pi i=x} b_{i x}\right.}_{\mathbb{E}[\cdot]=\varepsilon}+\underbrace{\left.\sum_{i: x_{i \neq x}} b_{i x}\right)}_{\tilde{\mathbb{I}}[\cdot]=0} \cdot \frac{1}{\varepsilon} \\
& =\sum_{i} \mathbb{1}\left[x_{i}=x\right] .
\end{aligned}
\end{aligned}
$$

- Communication $\Omega(d)$ bits
- Runtime for $\left\{\begin{array}{l}\text { Server } \\ \text { User }\end{array}\right.$ $\Omega(d)$.

Next Lecture:

Count Sketch

Amplification

Heavy Hitters

Treetlist

