Private Synthetic Data Generation

Final Project

- Homework 3 due this Sunday
 - Including your project description
- Project presentation:
 - May 3 and May 5
 - 20 mins

Differentially Private Synthetic Data

Algorithm

Sensitive data set (e.g. medical records)

Synthetic data set "Fake" data records that preserve important statistical properties

Allow arbitrary usage

Data Scientist

3

Synthetic Data Release

- I. Synthetic data for query/statistics release
 - A large collection of statistics in mind
- 2. General-purpose synthetic data
 - Exploratory data analysis
 - Training ML models
 - •

This Lecture

- Synthetic data for query release
- General-purpose synthetic data

Synthetic Data for Statistic/Query Release

Counting Query Release

 $\mathsf{D} \in (\{\mathsf{0},\mathsf{I}\}^d)^n$

	Smoke	Lung Cancer	Diabetes	OCD	
patient_id l	I	I	I	I	q(x) = 1
patient_id2	I	0	0	I	q(x)=0
patient_id3	I	I	0	I	q(x) = 1
patient_id4	0	0	I	0	q(x)=0
					q(D) = 1/2

Counting query: what is the fraction of people that satisfy some specified property q?

Synthetic Data for Query Release

$$|q(\mathsf{D}) - a_q| \leq \alpha$$
 for every $q \in Q$

Consistency: For example, #(smoke & lung cancer) + #(smoke & no lung cancer) = #(smoke)

A Zero-Sum Game View

- Equilibrium corresponds to an accurate solution
- Computing equilibrium using no-regret learning algorithms
- Reconfigure the prior approach to get computational efficiency

Zero-Sum Game Formulation

$$U(\hat{D},q) = q(\hat{D}) - q(D)$$

Data player wants to minimize and Query player wants to maximize

When Q is closed other negations ($q \in Q \Rightarrow 1 - q \in Q$), max $U(\hat{D}, q)$ captures the max-error of \hat{D}_q

Approximate Equilibrium

Definition (Approximate Minimax Equilibrium)

- Data player plays a distribution \hat{D} over records
- Query player plays distribution \hat{Q} over queries
- (\hat{D}, \hat{Q}) is α -approximate minimax equilibrium, if no player can gain more than α by switching to a different distribution.

Approximate Equilibrium Implies Accuracy

Theorem. In an α -approximate equilibrium, the synthetic data distribution satisfies: $\max_{q \in Q} |q(\hat{D}) - q(D)| \leq \alpha$

Output \hat{D} as the synthetic data

How do we compute a minimax strategy privately?

Equilibrium via No-Regret Learning

Over rounds t = 1, ..., TData player Runs online learning: Update distribution \hat{D}^t to minimize UQuery player Best response: Find a high-error query q^t for \hat{D}^t

Regrets for both players:
Data player:
$$\frac{1}{T} \sum_{t} U(\hat{D}^{t}, q^{t}) \leq \min_{D'} \frac{1}{T} \sum_{t} U(D', q^{t}) + \operatorname{Reg}_{D}$$

Query player: $\frac{1}{T} \sum_{t}^{t} U(\hat{D}^{t}, q^{t}) \geq \max_{q \in Q} \frac{1}{T} \sum_{t}^{t} U(\hat{D}^{t}, q) - \operatorname{Reg}_{Q}$

Equilibrium via No-Regret Learning

Over rounds
$$t = 1, ..., T$$

Data player: $\frac{1}{T} \sum_{t} U(\hat{D}^{t}, q^{t}) \le \min_{D'} \frac{1}{T} \sum_{t} U(D', q^{t}) + \operatorname{Reg}_{D}$
Query player: $\frac{1}{T} \sum_{t}^{t} U(\hat{D}^{t}, q^{t}) \ge \max_{q \in Q} \frac{1}{T} \sum_{t}^{t} U(\hat{D}^{t}, q) - \operatorname{Reg}_{Q}$

Theorem [FS97]. The average plays $(\overline{D}, \overline{Q})$ converge to α -approximate minimax equilibrium, where $\alpha \leq \operatorname{Reg}_D + \operatorname{Reg}_Q$

MWEM [HRI0, HLM12]

Data player
Multiplicative weights (MW) over X
for each
$$x \in X$$

 $\hat{D}_t(x) \propto \exp\left(-\eta \sum_{t' < t} q_{t'}(x)\right)$

 $\begin{array}{c} \mathbf{Query player} \\ \text{find a query with high payoff} \\ \text{vs.} & \text{using exponential mechanism with} \\ & \text{per-round privacy budget } \varepsilon_0 \end{array}$

$$\begin{split} & \operatorname{Reg}_{D} \leq O\left(\sqrt{\frac{\ln|X|}{T}}\right) = O\left(\sqrt{\frac{d}{T}}\right) \\ & \operatorname{Reg}_{Q} \leq O\left(\frac{\ln|Q|}{n\varepsilon_{0}}\right) = O_{\delta}\left(\frac{\sqrt{T}\ln|Q|}{n\varepsilon}\right) \end{split}$$

MWEM [HRI0, HLMI2]

Data player
Multiplicative weights (MW) over X
for each
$$x \in X$$

 $\hat{D}_t(x) \propto \exp\left(-\eta \sum_{t' < t} q_{t'}(x)\right)$

Query playervs.find a query with high payoffusing exponential mechanism:

- MWEM: statistically optimal [BUV14]
 - For α -accuracy, $n \gtrsim d^{1/2} \log |Q|/(\epsilon \alpha^2)$
- Maintaining an exponential-sized distribution \Rightarrow exponential run-time
- For statistical optimality, worst-case run-time must be exponential in d [DNRRV09, UVII, UIII3]

How to overcome the computational bottleneck?

Instead of maintaining a exponential size distribution, Data player solves hard optimization problems

Can then leverage sophisticated solvers (e.g., integer program solvers CPLEX, Gurobi)

The "Dual" approach

• Prior approach: MWEM [HRI0, HLMI2]

Data player Run MW over the domain X (Exponential size)

VS.

Query player Best response: find a query with high payoff (Tractable problem)

Our Dual Approach: DualQuery [GGHRW] ICML14

Data Player's Optimization Problem

- Sample queries q_1, q_2, \ldots, q_s from query distribution (for privacy)
- Pick a record to minimize the average payoff over q_1, q_2, \ldots, q_s :

$$\min_{\mathbf{x}\in\mathbf{X}}\left[\left(q_{\mathbf{I}}(\mathbf{x})-q_{\mathbf{I}}(\mathbf{D})\right)+\ldots+\left(q_{\mathbf{s}}(\mathbf{x})-q_{\mathbf{s}}(\mathbf{D})\right)\right]$$

But D is fixed, so equivalent to $\min_{x \in X} [q_1(x) + \ldots + q_s(x)]$

- Pure optimization problem: can be solved without privacy
- In general, an intractable problem (MAXCSP)
- Several query classes (e.g. k-way marginals, parities) give integer program formulation. We can use highly optimized solvers (e.g. CPLEX, Gurobi)

The "Primal" Approach

Replace MW by methods that can leverage heuristics solvers: *Follow-the-perturbed-leader* (FTPL)[KV05, SKS16, SN19]

• Our approach: FEM (FTPL w/ exp mech.) [VTBSW] ICML20

Data player

Run FTPL over the domain X Can be computed by solvers VS.

Query player

Best response: find a query with high payoff (Tractable problem)

FTPL for Data Player

FTPL optimization: given q_1, \ldots, q_{t-1} from the Query player

$$\min_{x \in X} [q_1(x) + \ldots + q_{t-1}(x) + \langle \sigma, x \rangle]$$

where σ is a random vector drawn from exponential distribution

Can also be solved with an integer program solvers for k-way marginals without using the private data D

Theoretical Guarantees

Prior approach (always exp time)

• MWEM [HR10, HLM12]:

$$\alpha \lesssim \frac{d^{1/4} \log^{1/2} |Q|}{(n\varepsilon)^{1/2}}$$

 α : target accuracy ε : privacy loss n: sample size |Q|:# queries

Our approach that uses integer program solvers [VTBSW20]

- . (Improved) DualQuery:
- FTPL with Exp Mech (FEM):

$$\alpha \lesssim \frac{d^{1/5} \log^{3/5} |Q|}{(n\varepsilon)^{2/5}}$$
$$\alpha \lesssim \frac{d^{3/4} \log^{1/2} |Q|}{(n\varepsilon)^{1/2}}$$

Theoretical Guarantees

 α : target accuracy ε : privacy loss n: sample size |Q|:# queries • HDMM (Factorization mech) [MMHM18]: $\ell_2 \operatorname{error} \leq \frac{\operatorname{Factorization norm of }Q}{n\epsilon}$

Our approach that uses integer program solvers [VTBSW20]

- . (Improved) DualQuery:
- FTPL with Exp Mech (FEM):

$$\alpha \lesssim \frac{d^{1/5} \log^{3/5} |Q|}{(n\varepsilon)^{2/5}}$$
$$\alpha \lesssim \frac{d^{3/4} \log^{1/2} |Q|}{(n\varepsilon)^{1/2}}$$

Comparison with HDMM [ММНМ18]

Comparison with HDMM [ММНМ18]

Leveraging Public Data

[LVSUW21]

Running MW over a public data set

MW^{pub}

Data player Run MW over a public dataset

VS.

Query player

Best response: find a query with high payoff (exponential mechanism)

MW^{pub}

Data player Run MW over a public dataset

VS.

Query player Best response: find a query with high payoff (exponential mechanism)

(Non-Zero) Game Value

Given a public dataset ${\cal S}$

Best Mixture Error: $\min_{\mu \in \Delta(S)} \max_{q \in Q} \left[q(\mu) - q(D) \right]$

Characterizing public-private relationship (S, D)

Combinations of (Private Data / Public Data)

Combinations of (Private Data / Public Data)

General-purpose synthetic data with deep generative models

Generative Adversarial Nets (GANs) [GPM+14]

2-Player Zero-Sum Game

Approach Generative adversarial nets (GANs) + Differential privacy

DP GANs Support Clinical Data Sharing [BWWLBBG] Published in *Circulation: Cardiovascular Quality and Outcomes 2019*

Also in [XLWWZ18], [YJS19], [TKP20], [TWBSC20]...

Private GAN Training

Training Generator:

- Does not directly interact with real data
- Train using standard (non-private) methods (e.g., SGD)

Privately Training Discriminator:

- Interacts with real data
- Train using DP method such as DP-SGD

Models Trained on Synthetic v.s. Real Data

Evaluation with Human (Discriminators)

Difficult to Reach Convergence

- Training produces a sequence of (generator, discriminator) $(G_1, D_1), \ldots, (G_T, D_T)$
- The last generator G_T often gives poor synthetic data distribution
- But mixture of generators can provide good synthetic data [BWWLBBG19]

Private Post-GAN Boosting

[NWD] ICLR21

- The entire sequence $(G_1, D_1), \ldots, (G_T, D_T)$ satisfy DP
- Compute a mixture over $\{G_1, \ldots, G_T\}$

Post-GAN Zero-Sum Game Approximate each generator G_t by taking r samples; Let B be the entire set of the rT examples

Data player distribution ϕ over Bmin max $U(\phi, D_j) \equiv \mathbb{E}_{x \sim P_X}[D_j(x)] + \mathbb{E}_{x \sim \phi}[(1 - D_j(x))]$

Post-GAN Equilibrium

DP GAN + MWEM Over rounds t = 1, ..., T

Data player runs MW to update distribution ϕ over B

Query player uses exponential mech to select a useful discriminator

Approximate equilibrium: ϕ synthetic data distribution over B; D mixture discriminator Rejection sampling:

Use D to improve ϕ by "rejecting" unlikely samples

Real Data

DP Last Generator

J

DP DRS

DP PGB

DP PGB+DRS

Regression RMSE with Synthetic 1940 Samples

Train ML models on synthetic data and Test them on real out-of-sample data

	GAN	DRS	PGB	PGB + DRS
Logit Accuracy	0.626	0.746	0.701	0.765
Logit ROC AUC	0.591	0.760	0.726	0.792
Logit PR AUC	0.483	0.686	0.655	0.748
RF Accuracy	0.594	0.724	0.719	0.742
RF ROC AUC	0.531	0.744	0.741	0.771
RF PR AUC	0.425	0.701	0.706	0.743
XGBoost Accuracy	0.547	0.724	0.683	0.740
XGBoost ROC AUC	0.503	0.732	0.681	0.772
XGBoost PR AUC	0.400	0.689	0.611	0.732
	DP	DP	DP	DP PGB
	GAN	DRS	PGB	+DRS
Logit Accuracy Logit ROC AUC Logit PR AUC	DP GAN 0.566 0.477 0.407	DP DRS 0.577 0.568 0.482	DP PGB 0.640 0.621 0.532	DP PGB +DRS 0.649 0.624 0.547
Logit Accuracy Logit ROC AUC Logit PR AUC RF Accuracy RF ROC AUC ROC AUC RF PR AUC PR AUC	DP GAN 0.566 0.477 0.407 0.407 0.512 0.407	DP DRS 0.577 0.568 0.482 0.459 0.553 0.442	DP PGB 0.640 0.621 0.532 0.481 0.558 0.425	DP PGB +DRS 0.649 0.624 0.547 0.628 0.652 0.535

Summary

- Zero-sum game view on synthetic data
- Recovers classical methods and allows reconfigurations that leverage heuristics solvers
 - MWEM \rightarrow FEM / DualQuery
- Combine classical methods with deep learning methods
 - Private Post-GAN boosting: DP-GAN + MWEM

References

"Leveraging public data in private query release" preprint

```
"Private Post-GAN Boosting"
ICLR 2021
```

"New Oracle-Efficient Algorithms for Private Synthetic Data Release" ICML 2020

"Privacy-preserving generative deep neural networks support clinical data sharing" In Circulation: Cardiovascular Quality and Outcomes 2019

"How to Use Heuristics for Differential Privacy" FOCS 2019

"Dual Query: Practical Private Query Release for High Dimensional Data" ICML 2014; JPC 2016