Private Synthetic Data Generation



Final Project

- Homework 3 due this Sunday

* Including your project description

* Project presentation:

* May 3 and May 5

« 20 mins



Differentially Private Synthetic Data

% H Algorithm ey
S e

Sensitive data set
(e.g. medical records)

(@

Synthetic data set
“Fake” data records that preserve
important statistical properties

Allow arbitrary usage

Data Scientist
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Synthetic Data Release

|. Synthetic data for query/statistics release
- A large collection of statistics in mind
2. General-purpose synthetic data
- Exploratory data analysis

* Training ML models



This Lecture

* Synthetic data for query release

 General-purpose synthetic data



Synthetic Data for Statistic/Query Release



Counting Query Release

D e ({0, 1}9)"
Smoke CLung Diabetes OCD
ancer
patient_id| I I I I q(x) = |
patient_id2 I 0 0 I qg(x) =0
patient_id3 I I 0 I q(x) = |
patient_id4 0 0 I 0 qgx) =0
q(D) = 1/2

Counting query: what is the fraction of people that satisfy some
specified property q?

e.g. 4(x) = has “Smoke”, “Lung Cancer” & “OCD”
(3-way Marginals)
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Synthetic Data for Query Release

D
D> = Query class Q
D3 |===» Algorithm

— Synthetic dataset D

D. ‘

Answers: a;,as, ... , d|Q|

a-accurate if
|q(D) — aq| < a for every g € Q

Consistency:
For example,
#(smoke & lung cancer) + #(smoke & no lung cancer) = #(smoke)



A Zero-Sum Game View

» Equilibrium corresponds to an accurate solution
» Computing equilibrium using no-regret learning algorithms

- Reconfigure the prior approach to get computational efficiency




Zero-Sum Game Formulation

Data player Query player
actions: records in X actions: queries in Q
(Synthetic) Data distribution Distribution over
D over domain X queries Q

“Error” payoff for (D, q):
UD. q) = q(D) — q(D)

Data player wants to minimize and Query player wants to maximize

When Q is closed other negations (g € Q = 1 — g € Q),

max U(D q) captures the max-error of D

q
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Approximate Equilibrium

Definition (Approximate Minimax Equilibrium)
* Data player plays a distribution D over records
* Query player plays distribution Q over queries

+ (D, Q) is a-approximate minimax equilibrium, if no player can gain more than a by
switching to a different distribution.
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Approximate Equilibrium Implies Accuracy

Theorem. In an a-approximate equilibrium,
the synthetic data distribution satisfies:

max | g(D) — g(D)| < «
qeQ

Output D as the synthetic data

How do we compute a minimax strategy privately?
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Equilibrium via No-Regret Learning

Overroundst=1,...,T

Data player Query player

|

Runs online learning:
Update distribution D’
to minimize U

Best rsponse:
Find a high-error query
q' for D'

Regrets for both players
Data pl 'lZU(ﬁt < —ZU(D’ Y+R
ata player: = . q m1n , g eg,

1 N
Query player: — Y U(D', g") > max— Y U, Re
y play th: (D', q") quTZ (D', q) — Reg,
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Equilibrium via No-Regret Learning

Overroundst=1,...,T

1
. r 1 A )
Data player: T E UD!, qg') < m1n— E UD',q’) + Reg,,

1
Query player: — Y U(D', g") > max— Y U, Re
y play th: (D' q") quTZ (D', q) — Reg,

Theorem [FS97].The average plays (D, Q) converge to
a-approximate minimax equilibrium, where
a < Reg, + RegQ
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MWEM [HR10, HLM 2]

o Data.player Query player
Multiplicative weights (MW) over X find a query with high payoff
foreachx € X vS. using exponential mechanism with
A er-round privacy budget €
D (x) x exp <—;7 Z cg(x)) P P s
1'<t

n|X| d
Reg < O =0 —
T T

15



MWEM [HR10, HLM12]

Data player
Multiplicative weights (MW) over X Query player
foreachx € X vs. | find a query with high payoff

) using exponential mechanism:

lA)t(x) X eXp <—;7 Z q,(x)

t'<t

MWEM: statistically optimal [BUV 4]
For a-accuracy,n > d'?log| Q|/(ea?)

- Maintaining an exponential-sized distribution = exponential run-time

For statistical optimality, worst-case run-time must be exponential in d
[DNRRVO9, UV |, UllI 3]
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How to overcome the
computational bottleneck!?

Instead of maintaining a exponential size distribution,
Data player solves hard optimization problems

Can then leverage sophisticated solvers
(e.g., integer program solvers CPLEX, Gurobi)
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The “Dual” approach

* Prior approach: MWEM [HR 10, HLM 2]

Data player
Run MW over the domain X
(Exponential size)

VS.

Query player
Best response: find a query with high payoff

(Tractable problem)

*  Our Dual Approach: DualQuery [ GGHRW] ICMLI4

Query player
Run MW over the query class Q

(Size scales with |Q|)

VS.

18

Data player
Best response: find a record with small payoff
(Intractable problem)

New computational bottleneck




Data Player’s Optimization Problem

Sample queries qi, g»,..., gs from query distribution (for privacy)

* Pick a record to minimize the average payoff over q,,qa, ..., qs:
min [(q1(x) — q1(D)) + ... + (¢5(x) — ¢5(D))]

But D is fixed, so equivalent to

min g (x) + . .. + g5(x),

* Pure optimization problem: can be solved without privacy

* In general, an intractable problem (MAXCSP)

- Several query classes (e.g. k-way marginals, parities) give integer program
formulation.{;\/e can use%mighly optimized solvers (e.g. CPLEX, Gurobi)
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The “Primal” Approach

Replace MWV by methods that can leverage heuristics solvers:
Follow-the-perturbed-leader (FTPL)[KVO05, SKS16,SN | 9]

Data player
Run FTPL over the domain X
Can be computed by solvers

VS.

. Our approach: FEM (FTPL w/ exp mech.) [VTBSW] ICML20

Query player
Best response: find a query with high payoff

(Tractable problem)
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FTPL for Data Player

FTPL optimization: given gy, ..., q,_; from the Query player

min[g;(x) + ... + g,_1(x) + (0, x)]

xeX

where ¢ is a random vector drawn from exponential distribution

Can also be solved with an integer program solvers for k-way marginals
without using the private data D

21



Theoretical Guarantees

Prior approach (always exp time)

q:target accuracy - MWEM [HR10, HLMI2]:
¢: privacy loss 1/4 1~ o112

| , L <4 log T 0]
n:sample size ~ (ne)112

| O | : # queries

Our approach that uses integer program solvers [VITBSW20]
- d1/5 10g3/5 | Q |

~ (n 8)2/5

d3/4 10g1/2 | Q |
. FTPL with Exp Mech (FEM): a <
(n8)1/2

. (Improved) DualQuery: a

22



Theoretical Guarantees

o target accuracy - HDMM (FaCtorization meCh)
MMHM 8]:

&: privacy loss
Factorization norm of O

n: sample size
N/

£, error S
| O | : # queries ne

Our approach that uses integer program solvers [VTBSW20]
- d1/5 10g3/5 | Q |

~ (n 8)2/5

d3/4 10g1/2 | Q |
. FTPL with Exp Mech (FEM): a <
(n8)1/2

. (Improved) DualQuery: o
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Comparison with HDMM [MMHMI 8]

ADULT:3-way marginals LOANS:3-way marginals
—e— FEM 05 —e— FEM
0.3 —e— HDMM | —e— HDMM
o 5 04
L] L]
o w 0.3
1) 1)
< = 02
0.1
0.1 0.15 0.2 0.25 0.5 1
£ 3
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Max Error

0.35

0.30

0.25

0.20

0.15

Comparison with HDMM [MMHMI 8]

ADULT:5-way marginals

L L

1.0
§ 0.8

—e— FEM L]
—— HDMM 3% 06

=
0.4
: 0.2

32 64 128 256 512 1024
Workload (Number of 5-Way Marginals)
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LOANS:5-way marginals

—e— FEM
—e— HDMM

—

—

32 64 128 256 912 1024
Workload (Number of 5-Way Marginals)



Leveraging Public Data
[LVSUW21]

Running MW over a public data set

MyyPub

Query player
Data player. VS. | Bestresponse:find a query with high payoff
Run MW over a public dataset (exponential mechanism)
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MyyPub

Query player
Data player. VS. Best response: find a query with high payoff
Run MW over a public dataset (exponential mechanism)

(Non-Zero) Game Value

Given a public dataset §

Best Mixture Error: min max [q(,u) — q(D)]
HEA(S) g€Q

t

Characterizing public-private relationship (S, D)



Max
error

Combinations of (Private Data / Public Data)

---- DualQuery  ——- HDMM S MWEM —— PMWPUW Best mixture error

ACS (reduced): PA-18 / PA-10 ACS (reduced): PA-18 / OH-18 ACS (reduced): PA-18 / NY-18 ACS (reduced): PA-18 / CA-18

0.20

0.15

0.10

0.054

0.00

Privacy budget ¢




Max Error

Combinations of (Private Data / Public Data)

—————— DualQuery  --- HDMM  ---- MWEM  —— PMWP® ... Best mixture error

ACS: PA-18 / PA-10 ACS: PA-18 / OH-18 ACS: PA-18 / NY-18 ACS: PA-18 / CA-18

0.25
\\\\
0.20 A W
\' \\‘\
0.15 Ny
0.10 ~ T —
0.05 - T ——
0.00 -
O.1|25 0.|25 055 110 O.1|25 0.|25 055 110 O.1|25 0.|25 055 1:0 O.1|25 0.|25 055 110
ACS: GA-18 / GA-10 ACS: GA-18 / NC-18 ACS: GA-18 / NY-18 ACS: GA-18 / CA-18

Privacy Budget (¢g)



General-purpose synthetic data with
deep generative models
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Generative Adversarial Nets (GANs)

|[GPM+14]
2-Player Zero-Sum Game
@
| @ O
Noise e O .
Generator G: @ O Synthetic data
imic the real dat . e
mimic the real data N = %
A @
_ Discriminator [ Real/Fake . Probabiltyof
distinguish real and fake data Examples — “real”

Wasserstein GAN [ACB1 /]

min max [D(x)] + [1 — D(G(2))]
G D

X~Px Zsz
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Approach
Generative adversarial nets (GANs)
+ Differential privacy

DP GANSs Support Clinical Data Sharing [ BWWLBBG]

Published in Circulation: Cardiovascular Quality and Outcomes 2019

Also in [XLWWZ18], [Y]S19],[TKP20], [TWBSC20]...
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Private GAN Training

Training Generator:
Does not directly interact with real data

Train using standard (non-private) methods
(e.g., SGD)

Privately Training Discriminator:
Interacts with real data
Train using DP method such as DP-SGD

33

Synthetic

Real Data
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Models Trained on Synthetic v.s. Real Data

¢ Accuracy w/ real training data

@ Accuracy w/ synthetic training data

0.95

P 4
0.9

O 4 O
0.85

O
Test e 8
Accuracy ors
0.7
0.65
0.6
0.55
0.5
Random Nearest SVM Logistic
Forest Neighbor Regression
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Evaluation with Human (Discriminators)

Synthetic

Real Data Scores for Real

Data Scores for Synthetic

50 synthetic 50 real
. 0.200

examples patients
0.175
Mixed 0.150
Data Set 0.125
l 0.100
O O O 0.075

3 clinicians ‘ ‘ ‘
0.050

l 0.025

Provide a realistic score from 0 to |0  0.000 . , ) 3 . 0
for each example Realistic Score (0 least real, 10 most real)
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Difficult to Reach Convergence
- Training produces a sequence of (generator, discriminator)
(G, D), ..., (Gp, Dy)

» The last generator G often gives poor synthetic data distribution

* But mixture of generators can provide good synthetic data
[BWWLBBGI 9]
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Private Post-GAN Boosting

'NWD] ICLR21

* The entire sequence (G, D,), ..., (G, D) satisfy DP

» Compute a mixture over {Gy, ..., G}

Post-GAN Zero-Sum Game

Approximate each generator G, by taking r samples;
Let B be the entire set of the 1" examples

Data player
distribution ¢ over B

min max U(g, D;) =

Query player

distribution over {D, ..., Dy}

= p D] +

)

37
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Post-GAN Equilibrium

DP GAN + MWEM

Overroundst=1,...,T

Data player
runs MW to update

distribution ¢ over B

Query player
uses exponential mech to

select a useful discriminator

Approximate equilibrium:
@ synthetic data distribution over B; D mixture discriminator

Rejection sampling:
Use D to improve @ by “rejecting” unlikely samples
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Real Data

Real Data

Last Generator

DP Last Generator

DRS

DP DRS

39

®: 0 @9

DP PGB

@ ® W

PGB+DRS

DP PGB+DRS



RMSE In Income

Regression RMSE with Synthetic 1940 Samples

—— DPGAN

—— DPDRS
950 1 —— DP PGB

DP PGB+DRS

900 -
850 —
800 —
750 = ,

Trained on real data

40

Trained on synthetic data



Train ML models on synthetic data and
Test them on real out-of-sample data

GAN DRS PGB PGB

+ DRS

Logit Accuracy 0.626 0.746 0.701 0.765
Logit ROC AUC 0.591 0.760 0.726 0.792
Logit PR AUC 0483 0.686 0.655 0.748
RF Accuracy 0.594 0.724 0.719 0.742
RF ROC AUC 0.531 0.744 0.741 0.771
RF PR AUC 0425 0.701 0.706 0.743
XGBoost Accuracy 0.547 0.724 0.683 0.740
XGBoost ROC AUC 0.503 0.732 0.681 0.772
XGBoost PR AUC 0400 0.689 0.611 0.732

DP DP DP DP PGB
GAN DRS PGB +DRS

Logit Accuracy 0.566 0.577 0.640 0.649
Logit ROC AUC 0477 0.568 0.621 0.624
Logit PR AUC 0.407 0.482 0.532 0.547
RF Accuracy 0.487 0.459 0.481 0.628
RF ROC AUC ROC AUC 0.512 0.553 0.558 0.652
RF PR AUC PR AUC 0.407 0.442 0425 0.535
XGBoost Accuracy 0.577 0.589 0.609 0.641
XGBoost ROC AUC 0.530 0.586 0.619 0.596
XGBoost PR AUC 0.398 0479 0.488 0.526
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Summary

- Zero-sum game view on synthetic data

 Recovers classical methods and allows reconfigurations

that leverage heuristics solvers

- MWEM — FEM / DualQuery

» Combine classical methods with deep learning methods

* Private Post-GAN boosting: DP-GAN + MWEM
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