- Recorp: Multiplicative Weights of Exp Mechanism (MWEM) - Zero-Sum Game · Minimax Theorem (von Neumann) . Prove it Via No-Regret (Online Learning) 9

Projects Proposal HW3

Release Query Synthetic Data $\alpha \xrightarrow{Aes} \frac{g_{ya}}{\hat{\chi}}$ Adding Noise (data independent) Laplace Gaussian Factorization $\hat{a} = Fh_{\hat{x}}$ $\hat{a} \approx a = Fh_{\pi}$ - Projection Online Learning Multiplicative Weights Zero-Sum Game 1 S Online-PMW Equilibrium Computation MWEM

From Online Learning to Query Release
Good: Design
$$M$$
, $x \rightarrow M \rightarrow \hat{p}$, $\max_{i \in F} \langle e_i, \hat{p} - h_x \rangle \leq \lambda$

Synthetic Duery
Data Player
$$p^{1} = (\frac{1}{m}, \frac{1}{m}, \dots, \frac{1}{m})$$
No-Regret
$$(Run MW)$$

$$MW Update$$

$$p^{2}$$

$$(\frac{1}{22}$$

$$(\frac{1}{22})$$

How to analyze MWEM?

Privacy:
MWEM as a composition of T rap mech.
Each satisfies
$$(z_0, 0) - DP$$
.
 $\implies (z, s) - DP$ w/ advanced composition
for $z \leq 1$, $z_0 \approx \frac{z}{\sqrt{T \ln(\frac{z}{s})}}$.

Accuracy ?

Who goes first ?
() Row goes first
- Row plays action
$$i \in R$$
.
- Col plays "been response"
 $j = \arg\min_{j} M_{ij}$.
 \Rightarrow Row chould choose
 $i = \arg\max_{i'} (\min M_{i'j'})$
 $\max\min_{i'} M_{ij} = -1$
(2) Col goes first
By symmetry
 $\min \max_{i} M_{ij} = 1$
Everybody wands to go second
 $\min \max M_{ij} \ge \max\min_{i'} M_{ij}$.
Seems "Ordering matters".

Randomized Strategies.

- Row $\chi \in \Delta(R)$ $-Gl \quad y \in \Delta(C)$ Expected Payoff $\begin{aligned}
 & = \sum_{\substack{i \in X \\ j \in Y}} \chi_i \cdot y_j \cdot M_{ij} = \left[\chi^T M y \right] \\
 & = \sum_{\substack{i \in R \\ j \in C}} \chi_i \cdot y_j \cdot M_{ij} = \left[\chi^T M y \right]$

Ordering matters still?
Row plays first
$$x \in \Delta(R)$$

- gets payoff min x^TMy
- Optimize and get
max min x^TMy
 $x \in \Delta(P)$
Col plays first $Y \in \Delta(C)$.
- get min max x^TMy .
"Prefers Playing Second"
min max $x^TMy \ge max min x^TMy$

Rock, Paper, Scissor Row plays $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ $\begin{array}{ll} \min & x^{\mathsf{T}} \, \mathsf{M} \, \mathsf{y} &= \mathsf{O} \, .\\ & \mathsf{y} &\\ \max & \min & x^{\mathsf{T}} \, \mathsf{M} \, \mathsf{y} &= \mathsf{O} \, . \end{array}$ min max $x^{T}My = 0$. "Ordering does not matter".

Minimax Theorem (von Neumann 28) There exists a value val(M) s.t. game value max min $\pi^T M y = \min_{\substack{y \ x}} \max_{\substack{x \ y}} \pi^T M y = val(m)$ $\pi^T y$ max n t M y = val(m) may not be yA pair (π, y) such that $\begin{bmatrix} \min_{y'} & \pi^{i}M & y' = val(m) \\ max & \chi^{i}M & y = val(M) \\ \pi^{i}M & y = val(M) \end{bmatrix}$ is called Equilibrium Minimax

Query Release as a Zero-Sum Game
Dataset (histogram)
$$h \in \Delta(x)$$

Linear queries : $Q_{1}, \dots, Q_{k} \in \mathbb{R}^{|k|}$
"Data Player" "Query Player"
Col player Row player
min
 $C = X$ "data unin" $R = \{R_{1}, \dots, R_{k}\}$
 $M_{1,2} = P_{1}(2) - P_{1}(h_{x})$
 $M_{1,2} = P_{1}(2) - P_{1}(h_{x})$
 T private data.
D A randomized strategy P for Col is just
a distribution over X . (histogram/Pataset)
D True private data set h_{X} is a strategy. for the col player.
What is the game value?
 $M_{1} \in S_{1}$ $M_{1} \in S_{2}$ $M_{1}(M) \leq S_{2}$
 $H \hat{J}^{T} M Q_{1} < S_{2}$ for some P_{2} .
 $H = Query player gels positive payoff$
 $\Rightarrow Va(M) = S$.
(3) MWEM is computy drappter egullibrium
 \implies accurate.

How to prove Minimax Theorem?

"As far as I can see, there could be no theory of games ... without that theorem ... I thought there was nothing worth publishing until the Minimax Theorem was proved" -- John von Neumann

1928.

Proof Using MW.
Reap: Min Player Max Player
(Row) (Col)

$$y \in \Delta(R)$$
 $x \in \Delta(C)$
Payoff: $U(x, y) = x^T M y$
We know min max $U \ge max min$ U
 $ur god: show "="$
Proof by Contradiction. Assume ">"
Proof by Contradiction. Assume ">"
There exists a game and $S > 0$
min max $U = max min$ $U t S$.
Thought Experiment: Over rounds $t=1....T$
Min Player Mak Player
 $y^t: x^t = arg max U(x', y^t)$
Average plays $(\overline{x}, \overline{y})$ across rounds.
O "No-Rapet" $\ddagger \frac{1}{2m} U(x', y') = \ddagger min \frac{1}{2m} U(\overline{x}, y^t) + Reg$
of min $y^t = min (\overline{x}, y^t) + Reg$
Synthetic Dafa $= min (U(\overline{x}, y^t)) + Reg$
 $x min U(\overline{x}, y^t) + Reg$
 $x min U(\overline{x}, y^t) + Reg$
 $y^t = min (U(\overline{x}, y^t)) + Reg$

(2) "Best Response" $f = \frac{1}{7} \frac{1}{5} \frac{1$ max min $U(x,y) + Reg \ge min max U(x,y)$ By assumption max min $U(x,y) + S = \min \max U(x,y)$ $Reg = \left| \frac{\ln |R|}{T} \right|$ decreases with T.