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1 Di�erential Privacy and Mechanism Design

Di�erential privacy turns out to be a useful for mechanism design even when privacy is not the primary
desideratum. For context, recall the following example of pricing digital goods.

Example 1.1 (Prices of a digital good). Suppose you made an iPhone app. Now you want to sell it
online. Suppose there are n buyers such that each buyer has their private valuation xi ∈ [0, 1]—that
is the maximum price they are willing to pay for a download of the app. Assuming that respondents
answered truthfully, a reasonable estimate for the revenue you would get from selling the download at
price p is

q(p; x) = p · # {i : xi ≥ p} .

The goal is to �nd a price p̂ such that q(p̂; x) is as large as possible.

A major assumption we make above is that each buyer reports their valuation truthfully. However, if
they are strategic agents, they may have incentives to mis-report their private valuations. For example,
suppose there are four buyers with private valuations: $1, $1, $2.01, $4. If all buyers report truthfully,
the revenue maximizing price will be $4.02. However, the buyer with the highest valuation has a strong
incentive to lie about his valuation. If he happens to know the valuations of the other three buyers, he
will likely report $2.01 dollar as well. We will revisit this example. This is a typical problem studied in
the �eld of mechanism design, which deals with problems that take inputs from strategic agents.

Di�erential privacy provides an appealing property for the price selection mechanism. If the
mechanism is di�erentially private, then each agent has very little in�uence on the (random) price
selection, and as a result they may have very little incentive to mis-report their private input. In
particular, we can give a utility-theoretic de�nition of di�erential privacy which is equivalent to the
standard de�nition we have been working with so far. Below we will write (x−i ,x ′i ) to denote the vector
(x1, . . . ,xi−1,x

′
i ,xi+1, . . . ,xn), which is a common notation in game theory.

Proposition 1.2 (Utility-theoretic view of DP). An algorithm A : Xn → Y is ε-di�erentially private if
and only if for every (utility) function f : Y → R+, and for every pair of neighboring data sets x ∈ Xn and
x ′i ∈ X:

E
Y∼A(x )

(f (Y )) ≤ exp(ε) E
Y∼A(x−i ,x ′i )

(f (Y ))

The function f in the above de�nition can be interpreted as an agent’s utility function for the
outcomes selected by the mechanism A. In particular, when the algorithm is ε-di�erentially private, the
agent cannot improve their utility by more than a multiplicative factor of exp(ε), no matter what their
utility function may be. In the digital good example, this corresponds to the promise that even if any
single agent has very little incentive to misreport their value for the app.
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Proof. First, suppose that the algorithm A is ε-di�erentially private. Then

E
Y∼A(x )

(f (Y )) =

∫
y
f (y)P (A(x) = y)dy

≤

∫
y
f (y) exp(ε)P (A(x ′) = y)dy

= exp(ε) E
Y∼A(x−i ,x ′i )

(f (Y ))

In the reverse direction, consider any event E ⊆ Y, and de�ne f to be f (y) = 1[y ∈ E]. Then

E
Y∼A(x )

(f (Y )) ≤ exp(ε) E
Y∼A(x−i ,x ′i )

(f (Y ))

implies
P

Y∼A(x )
(Y ∈ E) ≤ exp(ε) P

Y∼A(x−i ,x ′i )
(Y ∈ E)

which recovers the di�erential privacy de�nition. �

1.1 Mechanism Design Basics

We will consider n rational (utility maximizing) agents indexed by i who have privately known types
ti ∈ T (e.g., their private valuation on a good). A mechanism M : T n → Y is a mapping between
(reported) types of the n agents and some outcome space Y. Each agent has some preference over
outcomes, which are determined by their types: the utility that agent i gets why the outcome y is
selected is de�ned to be:

ui (y) ≡ u(ti ,y)

where u : T × Y → [0, 1] is some utility function.
In general, a mechanism designer wants to choose a desirable outcome (according to some objective

function like revenue) and also wants to incentivize agents to report their true types.

De�nition 1.3 (Dominant strategy truthfulness). A mechanismM : T n → Y is ε-approximate dominant
strategy truthful if for all t ∈ T n and for all i and t ′i ∈ T :

ui (M(t)) ≥ ui (M(t−i , t
′
i )) − ε .

That is, no player can gain more than ε utility by mis-reporting their type. If M is randomized, then

ui (M(t)) = E
Y∼M (t )

(ui (Y ))

Di�erential privacy implies approximate truthfulness, due to the following claim from the result of
[MT07].

Claim 1.4. If M is ε-di�erentially private for ε ≤ 1, then M is also ε-approximate dominant strategy
truthful.

Proof. First, observe that

E
Y∼M (t )

(ui (Y )) ≥ exp(−ε) E
Y∼M (t−i ,t ′i )

(ui (Y )) ≥ (1 − ε) E
Y∼M (t−i ,t ′i )

(ui (Y )) ≥ E
Y∼M (t−i ,t ′i )

(ui (Y )) − ε

where the �rst inequality follows from the de�nition of di�erential privacy, the second follows from the
fact that exp(−ε) ≥ 1 − ε , and the last one follows from that the utility is in the range of [0, 1]. �
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It is worth noting a couple of things about this connection between privacy and approximate
truthfulness.

• A reasonable objection is that this straightforward application of privacy makes not just truthful
reporting an approximate dominant —it makes everything an approximate dominant strategy.
Why should people tell the truth in such cases? As we will see, however, a typical application
of this approach will give a more nuanced guarantee, in which truthful reporting remains an
approximate dominant strategy, but not everything does

• The di�erential privacy de�nition composes across player deviations: if 4 players change their
reports, then the probability of any event can change by at most exp(4ε). Hence, di�erential
privacy automatically promises approximate group strategyproofness as well. No coalition of k
players can improve their expected utility by more than a factor of exp(kε) by deviating from
truthtelling behavior.

Regarding the �rst point above, we make the following observation. Suppose the utility-relevant
event for each player i in fact comes from some other outcome space Y ′i and players have utility
functions ui : Y ′i → [0, 1]. Let us further suppose that there is some function f : Y × T → Y ′i mapping
both outcome y selected by a mechanism M and agent i’s reported type t ′i to an outcome f (y, t ′i ) ∈ Y

′
i .

If we have that for every �xed y, f (y, ·) makes truthful reporting a dominant strategy, then truthful
reporting remains an ε-approximate dominant strategy to M , but non-truthful reports may no longer be
approximate dominant strategies.

Claim 1.5. IfM : T n → Y is ε-di�erentially private and f (y, ·) : T → Y ′i is dominant strategy truthful
for every outcome y ∈ Y, then truthful reporting is an ε-approximate dominant strategy for the mechanism
M ′ : T n → Y ′ that produces outcome f (M(t), ti ) for agent i .

Proof.

E
Y∼M (t )

(ui (f (y, ti ))) ≥ exp(−ε) E
Y∼M (t−i ,t ′i )

(ui (f (Y , ti )))

≥ exp(−ε) E
Y∼M (t−i ,t ′i )

(
ui (f (Y , t

′
i ))

)
≥ (1 − ε) E

Y∼M (t−i ,t ′i )

(
ui (f (Y , t

′
i ))

)
≥ E

Y∼M (t−i ,t ′i )

(
ui (f (Y , t

′
i ))

)
− ε

�

1.2 Revisiting Digital Goods

Now we have the formal language to think more formally about the problem of pricing digital goods.
Each buyer has a private type, which is their private valuation ti ∈ [0, 1] (after some re-scaling). The
outcome space Y = 2[n] × [0, 1]n is the set of all subsets of bidders who might be selected to win an
item, together with the set of all prices they might be charged: an outcome is a pair (S,p), where bidders
i ∈ S receive an item and pay pi . Formally, the utility of a buyer i is de�ned as

u(S,p) = 1[i ∈ S] (ti − pi )

where xi denotes the true value of the buyer. The mechanism proceeds as follows:

3



1. We can then use the exponential mechanism (or report noisy max) to select a price p̂ ∈ [0, 1] from
the exponential mechanism with revenue q(p; t) as the quality score.

2. We will then sell to each bidder i at this price p̂ if their reported value xi ≥ p. That is, for each
buyer i: i ∈ S and pi = p̂ if and only if f (p̂,xi ) ≡ 1[xi ≥ p̂] = 1.

3. Since for every �xed price p̂, reporting one’s true value is a dominant strategy, and p̂ is chosen in
an ε-di�erentially private way, the whole mechanism will be ε-approximately dominant strategy
truthful.

Acknowledgement This lecture not is built on notes developed by Aaron Roth.
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