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1 Report Noisy Max

When the domain is �nite, it is often more convenient to work with a another algorithm which behaves
very similarly to the exponential mechanism. The setup is the same—we have a set of outcomes Y (now
required to be �nite) and a score function with sensitivty at most δ for each outcome. The idea is to add
noise with expected magnitude ∆/ε to each item’s score, independent of the number of possible outputs.
The algorithm returns the output with the highest noisy score:
Algorithm 1: Report-Noisy-Max ARNM (x,q(·; ·),∆, ε)
Input: Assume that q(y; ·) is ∆-sensitive for every y ∈ Y, and Y = {1, ...,d} is �nite

1 Select Z1, ...,Zd ∼ Exp(2∆/ε) i.i.d. ;
2 return argmaxy∈{1, ...,d }

(
q(y; x) + Zy

)
;

The distribution being used to generate noise is the exponential distribution Exp(λ), a distribution
over the nonegative real numbers [0,+∞) with density hλ(y) =

1
λ exp(−y/λ).

This algorithm is generally much easier to implement than the exponential mechanism, since it does
not require explicitly computing any probabilities and can make use of standard libraries for sampling
from the exponential distribution. It satis�es a very similar guarantee to the exponential mechanism.

Exercise 1.1. Show that report noisy max is ε-di�erentially private. [Hint: Consider two outputs a,b.
For a �xed input x, what is P (a |x)

P (b |x)?]

In addition to making implementation easier, the utility analysis of report-noisy-max is more intuitive.
We just need to bound the probability that all d noise random variables are small:

Lemma 1.2 (Tail Bounds for Exponential Distributions).
1. If Z ∼ Exp(λ), then Pr(Z ≥ tλ) = e−t for all t ≥ 0.
2. If Z1, ...,Zd ∼ Exp(λ) i.i.d., and Zmax = maxdi=1 Zi then Pr(Zmax > λ(ln(d) + t)) = e−t for all t ≥ 0,

and E (Zmax) ≤ λ(ln(d) + 1).

Note that if Yi are independent Laplace random variables with Yi ∼ Lap(µi , λi ) and Zi = |Yi − µi |,
then the Zi ’s will be exponentially distributed with parameter λ and so Lemma 1.2 above applies.

Proof. The �rst part follows from a direct computation of the CDF:

Pr(Z > λt) =
∫
y≥λt

1
λe
−y/λdy = 1

λ

[
−λe−y/λ

]∞
y=λt

= e−t .

The second part follows by a union bound: the probability that any particular Zi exceeds λ(ln(d) + t) is
e−t
d by part 1, so the probability that any of the Zi ’s exceeds the bound is at most e−t . The expectation

calculation is essentially the same as in the proof the exponential mechanism’s utility (Proposition ??). �

We can also use Lemma 1.2 to prove the following, which is essentially identical to what we proved
about the exponential mechanism.
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Theorem 1.3. If q(y; ·) is ∆-sensitive for every y ∈ {1, ...,d}, then for every data set x in Xn and every
t > 0, the output of report-noisy-max Y ← ARNM (x, score,∆, ε) satis�es

Pr
(
qmax (x) − q(Y , x) ≥

2∆(ln(d) + t)
ε

)
≤ e−t , where qmax (x) =

dmax
y=1

q(y; x) ,

and
E (qmax (x) − q(Y , x)) ≤

2∆(ln(d) + 1)
ε

.

Exercise 1.4. Prove Theorem 1.3.

Additional Reading

• McSherry and Talwar’s paper that de�ned the exponential mechanism [MT07]
• The “Permute-and-Flip” mechanism [MS20] is an equivalent algorithm to Report-Noisy-Max

[Ste20]. McKenna and Sheldon [MS20] argue that the algorithm is optimal among a natural class
of selection algorithms.

• Further optimizations on the exact privacy cost of the exponential mechanism can be found in
[DDR20, DWX+20].

Acknowledge This lecture note is built on the note written by Adam Smith and Jonathan Ullman.
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