
Algorithms for Private Data Analysis Spring 2021
Lecture 6: Solving Selection Problems Privately

Steven Wu

1 The Exponential Mechanism

The Laplace mechanism works well when the computation we want to carry out returns a vector of
numeric values to which we can add noise, and the vector of interest has low global sensitivity.

What happens when when adding noise to the result makes no sense? The exponential mechanism
is the natural starting point for designing di�erentialy private algorithms.

We’ll motivate the mechanism with two problems, both of which have a “selection” �avor:

Example 1.1 (Heavy hitter). Suppose we are trying to �nd out which website is the most popular
among a set of users. If there are d websites, one can think of each user’s input as a subset xi ⊆ [d]. The
score of website j is the number of users who included j in their subset, that is, q(j; x) = |{i : j ∈ xi }|.
The winner has the highest score.

We wish to �nd a “heavy hitter” subject to di�erential privacy. We won’t necessarily be able to get
the exact top winner, but maybe we can identify a webiste with almost the maximum number of users.
One approach is to use the Laplace mechanism to release noisy versions of all the scores. But the global
sensitivity of the whole list is d , and then we would add noise d/ε to each score. Can we obtain the
name someone whose score is much closer than d/ε to the highest?

Example 1.2 (Prices of a digital good). Suppose you made an iPhone app. Now you want to sell it
online. In a survey, you talk to n people and �nd out the price xi ∈ [0, 1] each person would willing to
pay for a download of the app. Assuming that respondents answered truthfully, a reasonable estimate
for the revenue you would get from selling the download at price p is

q(p; x) = p · # {i : xi ≥ p} .

You would like to use a di�erentially private algorithm to publish a price p̂ ∈ {$0.01, $0.02, . . . $1.99}
such that q(p̂; x) is as large as possible.

Adding noise to the best price might not make sense: For example, if everyone had the same
maximum price xi = $0.70 for your app, the best price for you to charge would be $0.70. Charging $0.69
would also be ok (you would still make nearly as much as possible), but charging $0.71 would result in
no one buying your app.

1.1 Selection Problems and the Exponential Mechanism

These examples share a common structure. They are both special cases of a general selection problem,
speci�ed by:

• A set Y of possible outputs;
• A score function q : Y × Xn → R which measures the “goodness” of each output for a data set.

Given x ∈ Xn , our goal is to �nd y ∈ Y which approximately maximizes q(y; x). (When Y is
�nite, we can also think of q as a collection of Y separate low-sensitivity queries.)

1

• A sensitivity bound ∆ > 0 such that q(y; ·) is ∆-sensitive for every y. That is,

sup
y∈Y

sup
x,x′∈Xn
adjacent

|q(y; x) − q(y; x′)| ≤ ∆ . (1)

The table below shows how these parameters work out for our two examples:

Heavy Hitter Pricing a Digital Good
Possible outputs Y Websites {$0.01, $0.02, . . . $1.99}
Score q(y; x) = . . . Number of users visiting y y · # {i : xi ≥ y}

Maximum Sensitivity ∆ 1 1.99

Given these elements, we get Algorithm 1. The idea is that given the score functionq(·; x) that assigns
a number to each element y ∈ Y, we de�ne a probability distribution which generates each element in
y in Y with probability proportional to exp(ε2∆q(y; x); that is, we sample elements with a probability
that grows exponentially with their score. The symbol “∝” in Algorithm 1 means “proportional to”.

Algorithm 1: Exponential Mechanism AEM (x,q(·; ·),∆, ε)
Input: Assume that q(y; ·) is ∆-sensitive for every y ∈ Y.

1 Select Y form the distribution with Pr(Y = y) ∝ exp
(ε
2∆q(y; x)

)
;

2 return Y ;

When is this algorithm even well de�ned? When Y is �nite the algorithm is well-de�ned since we
can set

P(Y = y) =
e

ε
2∆q(y ;x)∑

y′∈Y

e
ε
2∆q(y

′;x)
. (2)

In fact, the mechanism makes sense over in�nite domains, and even continuous ones. For ini�nite
discrete domains like the integers Z, it must be that

∑
y∈Y e

ε
2∆q(y ;x) is �nite for every x. Over continuous

spaces like the real line, it must be that
∫
y∈Y exp

(ε
2∆q(y; x)

)
dy is �nite for every possible data set x. We

will see an example further below.
Now that we have a well-de�ned algorithm, we’ll try to understand why it is di�erentially private,

and why it is useful.

Theorem 1.3. If q is ∆-sensitive (i.e., satis�es (1)) then the exponential mechanism is ε-di�erentially
private.

Proof. Assume for simplicity that Y is �nite. For any output y and data set x we have P(y |x) =
e
ε
2∆ q(y ;x)∑

y′∈Y e
ε
2∆ q(y

′;x) . Let x′ be a data set adjacent to x. Since the sensitivity of q(y; ·) is at most ∆, we have

e
ε
2∆q(y ;x)

e
ε
2∆q(y ;x′)

= exp
(ε

2∆ (q(y; x) − q(y; x
′))

)
≤ exp

(ε

2∆ · ∆
)
= eε/2 (3)

and similarly, for the normalizing constants,∑
y′∈Y

e
ε
2∆q(y

′;x′)

∑
y′∈Y

e
ε
2∆q(y

′;x)
≤ sup

y′

(
exp

(ε

2∆ (q(y
′; x′) − q(y ′; x))

))
≤ eε/2 .

2

Thus the ratio Pr (y |x)
P (y |x′) is at most eε/2 · eε/2 = eε . The case of an in�nite domain is similar, with integrals

over to the base measure replacing sums. �

1.2 Utility of the Exponential Mechanism

We now have a very general tool in our toolbox, which can be used to design an agorithm for any
problem where we can assign possible outputs a score according to their desirability. The algorithm is
always di�erentially private.

The question is, when is this approach actually useful? Does it help us address heavy hitter and
price selection, the two examples problems we started out with?

Just how useful the exponential mechanism is depends a lot on the exact problem structure. But we
can write down a few clean and generally useful bounds. The best we can hope for from a selection
algorithm is that, on input a data set x, it outputs an element y ∈ Y with the maximum possible score,
denoted

qmax(x)
def
= max

y∈Y
q(y; x) (4)

We’ll show that we can get an element with near-maximum score, with high probability.

Proposition 1.4. Suppose Y is �nite and has size d . Then for every ∆-sensitive score function q, for every
data set x, and every t > 0, the output of the exponential mechanism Y ← AEM (x,q,∆, ε) satis�es:

P
Y←AEM (x,q,∆,ε)

(
q(Y ; x) < qmax(x) −

2∆(ln(d) + t)
ε

)
≤ e−t , where qmax(x) =

dmax
y=1

q(y; x) (5)

In particular, we have

E
Y←AEM (x,q,∆,ε)

(q(Y ; x)) ≥ qmax(x) −
2∆(ln(d) + 1)

ε
. (6)

Proof. Fix a data set x and a score function q. To make the proof more readable, we’ll drop the x symbol
in the score function, writing q(y) and qmax instead of q(y; x) and qmax(x).

We can divide the possible outputs into sets Gt and Bt of “good” and “bad” outputs, where

Gt =
{
y ∈ Y : q(y) > qmax −

2∆
ε (ln(d) + t)

}
and Bt =

{
y ∈ Y : q(y) ≤ qmax −

2∆
ε (ln(d) + t)

}
To prove the �rst part of the Proposition, we need to show that P (Bt) ≤ e−t . Let’s write the probability
of an element y as P (Y = y) = Ce ε

2∆q(y), where C is the normalizing constant C =
∑
y∈Y e

ε
2∆q(y).

Let y∗ be an output with score qmax. We can bound P (Bt) as

P (Bt) <
P (Bt)

P (y∗)
=

∑
y∈Bt P (Y = y)

P (Y = y∗)
=

∑
y∈Bt exp

(ε
2∆q(y)

)
exp

(ε
2∆qmax

) (7)

Since the bady’s satisfy q(y) ≤ qmax−
2∆
ε (ln(d)+t), the sum in the numerator is at most |Bt | exp(ε2∆qmax−

(ln(d) + t)) and we get that

P (Bt) <
|Bt | exp(ε2∆qmax − (ln(d) + t))

exp
(ε
2∆qmax

) = |Bt | · e
− ln(d)−t ≤ |Bt | ·

1
d
· e−t . (8)

Since Bt contains at most d − 1 elements, we get the desired bound on P (Bt).

3

The last part follows from the fact that for any nonnegative random variable Z , we have E (Z) =∫
z≥0 P (Z > z)dz. Let’s apply this to the random variable Z = ε

2∆ (qmax − q(Y)). The probability that it
exceeds z = ln(d) + t is at most e−t for t > 0, and at most 1 for for t ≤ 0. So we get

E (Z) =

∫ ∞

z=0
P (Z > z)dz =

∫ ∞

t=− ln(d)
P (Z > ln(d) + t)dt ≤

∫ 0

t=− ln(d)
1dy +

∫ ∞

t=0
e−tdt = ln(d) + 1 .

�

Example 1.5 (Heavy Hitter, continued). Let’s apply our new Proposition to the heavy hitter example.
The scores there are counts, and have sensitivity 1. Let qmax be the score of the most popular website,
and suppose d = 100—a reasonable number of website—and ε = 0.5. Proposition 1.4 shows that with
probability at least 0.99, we’ll get a candidate whose score is at most qmax −

2·1
0.5 (ln(100) + ln(1/0.01)) ≈

qmax−36.8. If the best candidate won by 39 or more votes, we would get their name with high probability.
Compare this with the Laplace mechanism, where scores would be perturbed by about d

ε = 200, and the
largest perturbation might be far bigger.

Example 1.6 (Pricing a digital good, continued). Let’s return to the problem of setting a price for an
iPhone app. There are d =200 possible prices, so we can apply Proposition 1.4 to show that we can get a
price that leads to revenue within about 2∆(ln(d) + 1)/ε = 2 · 1.999 · ln(200)/ε ≈ 31

ε of the best possible.
In fact, we can get a better bound for this problem. The key idea is that if a price p is good, then

the prices slightly less than p are also pretty good. We won’t work out the details here, but we will see
exercises which use the idea.

1.3 More Examples of the Exponential Mechanism

The Laplace Mechanism and Randomized Reponse can also be seen—almost—as special cases of the
exponential mechanism:

Laplace Mechanism Randomized Response
Possible outputs Y Rd {0, 1}n
Score q(y; x) = . . . ‖y − f (x)‖1 #agree(y, x)

Maximum Sensitivity ∆ GS f 1

If you plug the score function q(y; x) = ‖y − f (x)‖1 directly into the exponential mechanism, you
will sample from the distribution with probability proportional to exp

(
− ε2 ‖y − f (x)‖1

)
. This is de�nitely

d�erentially private, but it isn’t quite the Laplace mechanism. The actual Laplace mechanism samples y
with probability proportional to exp (−ε ‖y − f (x)‖1), e�ectively saving a factor of 2 in the exponent.
Something similar happens with randomized reponse. This occurs because the normalization constants
Cx by which one divides to get probability distributions are actually independent of x. The general
exponential mechanism must allow for a varying normalization constant, which is where the extra
factor of two comes from.

Acknowledge This lecture note is built on the note written by Adam Smith and Jonathan Ullman.

References

4

