
Algorithms for Private Data Analysis Spring 2021
Lecture 5: Properties of Di�erential Privacy

Steven Wu

1 Composition and Postprocessing

Notions of privacy should not be too fragile. If we argue that something is privacy-preserving in isolation
it should still be the case that it is privacy-preserving in the real world where more than one algorithm
or protocol is being run. One type of robustness we need is privacy under composition. Consider the
following two scenarios:

Scenario 1 Suppose two hopsitals hold overlapping data sets x(1) and x(2), and each runs a di�erentially
private algorithm on its data set. Suppose the hospitals run separate algorithms A1 and A2, each
of which is di�erentially private. For the individuals whose records are in both data sets, what
sort of prvacy guarantee can we make if an outside attacker see the output of both algorithms?

Scenario 2 Suppose I have one data set x, and I run an ε1 di�erentially private algorithm A1 to get
output a1. For example, maybe A1 estimates two counting queries: the number of diabetics in
the data set, and the number of people with high blood pressure. Based on the �rst answer a1, I
choose a second algorithm A(a1)2 that is ε2-DP. For example, maybe if both counts in a1 are at least
100, I will ask A2 to estimate the number of people who have diabetes and high-blood pressure,
but if one of the counts is small, I will instead ask about the number of people with heart disease.
I run A(a1)2 to get a2 and output both values a1, a2.

𝐴!

𝒙

𝐴#

𝒂𝟏 𝒂𝟐

𝐴

Figure 1: The composition of
two algorithms (solid boxes),
viewed as a single larger algo-
rithm A (dashed box).

Both of these senarios are cases of composition. To simplify things
a bit, think of the two data sets in ‘Scenario 1’ as one big dataset x
containing the information from both hospitals; the set of people with
records in x would be the union of the sets of people in with records
in x1 and x2. So what the adversary sees in Scenario 1 is the outcome
of one big algorithm A(x) = (A1(x),A2(x)). Similarly, in ‘Scenario 2’
we can view the �nal output as the outcome of one big algorithm A
which includes the decision of which statistics to ask for as part of the
input to A2. Figure 1 captures both settings, showing the combined
algorithm as a dashed box.

Composition thus covers two apparently di�erent phenomena:
�rst, my data is used by many organizations, and I should consider
what is leaked by the combination of releases that concern me; second,
we would like to design algorithms and work�ows modularly, with
outputs of early stages feeding in to decisions made later on.

Di�erential privacy o�ers the following convenient guarantee: ifA1 andA2 are respectively ε1 and ε2
di�erentially private, thenA is ε ′-DP with ε ′ ≤ ε1+ε2. To set up the general formalism, letA1 : Xn → Y1
be ε1-DP, and let A2 : Y1 ×Xn → Y2 be ε2-DP for all values of its �rst input (that is A2(a1, ·) is ε2-DP for
every value of a1). This means that A2 runs a DP algorithm but exactly which algorithm that is depends
on a1.

1

Lemma 1.1. Let A : Xn → Y1 × Y2 be the randomized algorithm that outputs A(x) = (a1,a2) where
a1 = A1(x) and a2 = A2(a1, x). Then A is (ε1 + ε2)-DP.

Proof. We prove the discrete case here, for simplicity. Let x, x′ be neighboring data sets in Xn , and let
a = (a1,a2) be an outcome in Y1 × Y2 .

P (A(x) = (a1,a2)) = P (A1(x) = a1) · P (A2(x,a1) = a2) (1)

Since A1 is ε1-DP, and A2(a1, ·) is ε2-DP for every choice of a1, we can bound the probability above.

P (A(x) = (a1,a2)) ≤ eε1P (A1(x′) = a1) · e
ε2P (A2(x′,a1) = a2)

= eε1+ε2 · P (A(x′) = (a1,a2)) �

The proof applies to arbitrary sets by writing a set E as a union of singletons {(a1,a2)}, as in the proof
of randomized response (and Exercise 3.3) from Lecture 4.

By induction, we get a general-purpose way to analyze complex algorithms with many stages. We’ll
write it here, and leave the proof as an exercise.

Lemma 1.2 (Basic Composition). Let A1,A2, ...,Ak be a sequence of randomized algorithms, where
A1 : Xn → Y1 and Ai : Y1 × · · · Yi−1 × Xn → Yi for i = 2, 3, ...,k (so Ai takes as input elements
that could have been output by A1, ...,Ai−1, as well as a data set in Xn). Suppose that for each i ∈ [k],
for every a1 ∈ Y1,a2 ∈ Y2, ...,ai−1 ∈ Yi−1, we have that Ai (a1, ...,ai−1, ·) is εi -DP. Then the algorithm
A : Xn → Y1 × · · · × Yk that runs the algorithms Ai in sequence is ε-DP for ε =

∑k
i=1 εi .

Exercise 1.3. Prove Lemma 1.2.

The Basic Composition lemma allows us to design complex algorithms by putting together smaller
pieces. We can view the overall privacy parameter ε as a budget to be divided among these pieces. We
will thus often refer to ε as the “privacy budget”: each algorithm we run leaks some information, and
consumes some of our budget. Di�erential privacy allows us to view information leakage as a resource
to be managed.

Exercise 1.4. Suppose we run k executions of the Laplace mechanism on the same data set, dividing the
privacy budget equally among them. By what factor does the magnitude of the Laplace noise increase?

Exercise 1.5. Sometimes it is much better to analyze an algorithm as a whole than to use the composition
lemma. Consider the histogram example from Lecture 4, where X is written as a partition of disjoint
sets B1,B2, ...,Bd , and we want to count how many records lie in each set. Viewed as one d-dimensional
function, the histogram has global sensitivity 2. We could also view it asd separate functionsn1,n2, ...,nd ,
each with globabl sensitivity 1. How much noise would the Laplace mechanism add to these counts if
we ran it spearately for each of the nj with privacy budget divided equally among them? How does that
compare to running the Laplace mechanism once on the joint function?

1.1 Postprocessing

Now one question that might come up is whether it’s ok in Figure 1 to release only part of A’s output.
For instance, what if we release only a2? Or perhas some function of both a1 and a2? It turns out that
the privacy guarantee never gets worse when we release a function of the output.

Lemma 1.6 (Closure under postprocessing). LetA : Xn → Y and B : Y → Z be randomized algorithms,
where X,Y,Z are arbitrary sets. If A is ε-di�erentially private, then so is the composed algorithm B(A(·)).

2

Proof. Let’s �rst prove the lemma for the case where B is deterministic. In that case, the event B(A(x)) = b
is the same as the event A(x) ∈ B−1(b) where B−1(b) is the preimage of b under B. So we can just apply
the A’s DP guarantee to B−1(b):

P (B(A(x)) = b) = P
(
A(x) ∈ B−1(b)

)
≤ eεP

(
A(x′) ∈ B−1(b)

)
= eεP (B(A(x)) = b) . (2)

To handle the case where B is randomized, we can write the B(a) as the application of a deterministic
function f applied to the pair (a,R) where R is a random variable independent of a that represents B’s
random choices.

Thus, B(A(·)) is the application of a deterministic function to A′(x) = (A(x),R). The algorithm A′ is
ε-DP (since R is independent of A’s coins). Thus B(A(·)) is also ε-DP. �

1.2 Group privacy

Finally, we might also ask what sort of guarantee DP provides for a group of individuals in the data (a
family, say).

Lemma 1.7. Let x and x′ be data sets in Xn that di�er in k positions, for an integer 1 ≤ k ≤ n. If A is
ε-DP, then for all events E, we have

P (A(x) ∈ E) ≤ ekεP (A(x′) ∈ E) . (3)

Proof. Let x(0), x(1), ..., x(k) be a sequence of k + 1 data sets in Xn that move smoothly from x to x′: that
is, suppose x(0) = x, x(k) = x′ and every adjacent pair x(i−1), x(i) di�er in just one entry. Consider an
subset E of putputs. Moving from x(i−1) to x(i) increases the probability of E by at most eε . Since there
are k steps in the sequence, the probability of E can increase by at most eεk . �

Group privacy allows us to point out an important point about DP: the parameter ε can be small, but
it can never be very small while allowing useful information to be released. Speci�cally, if ε is much less
than 1/n then for every two datasets x and x̃, regardless of the number of entries in which they di�er,
the distributions of A(x) and A(x̃) are about the same. That means the algorithms more or less ignores
its input, and cannot release information that would allow one to tell apart 0n from 1n , or any other
pairs of data sets. We encapsulate this as the following lesson:

Useful di�erentially private algorithms require ε � 1/n.

In particular, it’s hard for di�erentially private algorithms to provide useful outputs when the input data
sets are small, unless we make ε quite large, perhaps even much larger than 1. “Aggregate” information
requires a big enough crowd over which to aggregate.

2 Interpreting DP: Smoking, Cancer, and Correlations

What does it mean to decide if a concept like di�erential privacy is a good de�nition of “privacy”? There
is no single answer, since it involves a connection between an unambiguous mathematical concept
and a nebulous social one. “Privacy” covers lots of di�erent concepts, many of which are more about
control than con�dentiality, and all of which are context-dependent.1 Nevertheless, we can try to wrap

1A number of writers have dissected the concept, trying to provide their own taxonomy of privacy’s many facets. Bran-
deis [?], Solove [?], and Nissenbaum [?] provide good places to start.

3

our heads around the guarantee that a technical concept provides—perhaps we can chip o� a piece of
“privacy” which is accurately pinned down by DP.

How can we start? A good exercise is to write down an natural-language sentence that captures the
type of guarantee we would like. A strong requirement, reminiscent of what is possible for encryption
would be this:

A �rst attempt: No matter what they know ahead of time, the attacker’s beliefs about
Alice are the same after they see the output as they were before.

Unfortunately, such a strong guarantee is impossible to achieve if we actually want to release
useful information. To see why, consider the example of a clinical study that explores the relationship
between smoking and lung disease. A health insurance company with no a priori understanding of
that relationship might, after seeing the results of the study, dramatically alter its estimates of di�erent
people’s likelihood of disease. In turn, this would likely cause the company to raise premiums for
smokers and lower them for nonsmokers. The conclusions drawn by the company about the riskiness
of any one individual (say Alice) are strongly a�ected by the results of the study. Their beliefs about
Alice have de�nitely changed.

However, the change can hardly be called a breach of Alice’s privacy. It happens because the study
reveals a feature of human biology—exactly what we want clinical studies to do!

So what can we hope to achieve? One important observation about the smoking and lung disease
example is that the information about Alice would be learned by the insurance company regardless of
whether Alice participated in the study. In other words, the conclusions the insurance company draws
about Alice come from the totality of the data set, and don’t depend strongly on her data. One way to
understand di�erential privacy is that this is the only kind of inference about individuals that it allows.

The DP principle: No matter what they know ahead of time, an attacker seeing the output
of a di�erentially private algorithm would draw (almost) the same conclusions about Alice
whether or not her data were used.

It is instructive to formalize this intuitive statement. What do we mean by “what the attacker knows”
and “what they learn”? We’ll adopt what statisticians call a Bayesian perspective, and encode knowledge
via probability distributions. Speci�cally, let’s think of the data set as a random variable X distributed
over Xn . For clarity, we’ll use capital letters like X to refer to random variables, and lower case symbols
like x to refer to speci�c realizations.

We can the adversary’s background knowledge via a prior distribution p(x) = P (X = x). We should
think of this as how likely a given data set is to occur given everything the attacker knows ahead of
time. 2 Because we don’t know what other information the attacker has, we will want our analysis to
work for every prior distribution p.

Given the output a = A(X). We can model “what the adversary learns” by the posterior distribution
of the data conditioned on the algorithm’s output. That is,

p(x | a) def
= P (X = x | A(X) = a) =

P (A(x) = a) · p(x)∑
x̃∈Xn P (A(x̃) = a) · p(x̃)

. (4)

2Our use of probability to model knowledge this way corresponds to the subjective interpretation of probability (see, e.g.,
[Háj19]). It’s pretty di�erent from the way we use probability in the de�nition of a randomized algorithm, or in the de�nition
of di�erential privacy. In those contexts, the probabilities re�ect a process we control, and it’s reasonable to think of them
as known exactly. In contrast, we cannot expect to know an attacker’s prior. Here, we posit only that it exists. Even this
postulate is delicate, especially since real attackers are computationally bounded. We ignore computational restrictions here
for simplicity.

4

But how should we model “what the attacker would have learned had person i’s data been removed”?
Given a data set x ∈ Xn , let x−i denote the data set in which person i’s entry has been replaced by a
default value. Consider a hypothetical world in which the data set x−i is used instead of the real data set
x. Given an output a, we can now consider the conditional distribution p−i (· | a) that the attacker would
have constructed in the hypothetical world, namely:

p−i (x | a)
def
= P (X = x | A(X−i) = a) =

P (A(x−i) = a) · p(x)∑
x̃∈Xn P (A(x̃−i) = a) · p(x̃)

. (5)

We can think of p−i (· | a) as encoding what the attacker would have learned about person i had person
i’s data never been used.

To formalize our claim about di�erential privacy, we’ll use the following shorthand. For two
distributions p and q on the same set Y (technically, over the same σ -algebra of events), we’ll write

p ≈ε q ⇔ (∀ events E ⊆ Y : p(E) ≤ eεq(E) and q(E) ≤ eεp(E)) . (6)

Given two random variables A and B distributed over the same set, we’ll sometimes abuse notation and
write A ≈ε B to mean that the relation in (6) is satis�ed by their distributions. With this notation, an
algorithmA is ε-DP if and only if, for every pair of neighboring data sets x and x′, we haveA(x) ≈ε A(x′).

Theorem 2.1. Let A : Xn → Y be ε-di�erentially private. For every distribution on X (possibly with
dependencies among the entries), for every output a ∈ Y, for every index i , we have

p−i (· | a) ≈2ε p(· | a) . (7)

Exercise 2.2. Prove Theorem 2.1. Hint: Fix an output a ∈ Y. Given a data set x ∈ Xn , how can you
write the ratio p−i (x |a)

p(x |a) in terms of the ratios of the form P(A(x−i)=a)
P(A(x)=a) ?

Something here might seem weird: how can the attacker learn about i’s data from a if xi was not
used to compute a? The answer is in the dependencies among the data records—the attacker can learn
about x−i , which itself reveals information about xi .

Returning to the smoking and lung disease example: Suppose the records in X are drawn i.i.d. from
one of several possible distributions. For simplicity, imagine there are two possible distributions, one
where the features are independent, and one where they are strongly correlated, so that the prior on
X is a mixture of the two. Seeing the clinical study’s results basically causes the insurance company’s
posterior to collapse to the i.i.d. distribution in which the features are correlated. Whether the study
used Alice’s data or not, the insurance company’s posterior distribution on Alice’s record would have
the features correlated.

What have we learned? We can model knowledge via probabilities, and learning via the change from
prior to posterior distributions. When we do that, we can make our intuition precise—-that di�erentially
private mechanisms reveal only information that could be learned without any particular person’s data.

We’ve also found a useful natural language formulation of our goal when thinking about con�den-
tiality of individuals’ data when releasing aggregate statistics. That type of formulation is particularly
useful since it can guide our intuition for the technical concepts. It can also help us articulate goals in
legal and policy discussions.

2.1 A not-so-great variation on di�erential privacy

The formulation of Theorem 2.1 also helps us distinguish among similar de�nitions of privacy.

5

Suppose we were to require that probabilities di�er by an additve error term rather than a multi-
plicative one. We might say that a randomized algorithm satis�es “δ -additive secrecy” if

∀x, x′ ∈ Xn neighbors , ∀ events E : P (A(x) ∈ E) ≤ P (A(x′) ∈ E) + δ . (8)

How di�erent is this from di�erential privacy? It certainly has things in common: for example, it
is closed under composition and postprocessing, and satis�es a similar version of group privacy. In
particular, we must have δ > 1/n to get useful information out of such an algorithm. However, it does
not satisfy a reasonable analogue to Theorem 3.1, and it does allow some algorithms that are pretty
obviously disclosive.

Exercise 2.3 (Name and Shame Mechanism). Consider the following mechanism NSδ . On input
x = (x1, ...,xn), for each i from 1 to n, it generates

Yi =

{
(i,xi) w. prob. δ ,
⊥ w. prob. 1 − δ .

(9)

Here ⊥ is just a special symbol meaning “no information”.
(i) Show that NSδ satis�es “δ -additive secrecy”. (ii) Show that for δ � 1/n, the mechanism publishes

some individuals’ data in the clear with high probability, and that for such outputs, Eq. (7) in Theorem 2.1
does not hold.

Summary

Key Points

• Di�erentially private algorithms can be assembled modularly, or run independently by di�erent
organizations. The privacy parameter accumulates at most additively across all executions that
use the same person’s record.

• We can view the privacy parameter as a budget to be divided among di�erent e�orts.

• For some algorithms, one gets a much better analysis by considering the steps jointly, rather than
using composition. (Exercise 1.5)

• Algorithms that access their data using summation queries can often be made di�erentially private
without too much loss of accuracy. We saw the example of Lloyd’s algorithm.

• Useful statistical summaries may have to reveal information about an individual to an attacker.
However, we can make a more subtle claim: No matter what they know ahead of time, an attacker
seeing the output of a di�erentially private algorithm would draw (almost) the same conclusions
about Alice whether or not her data were used.

Additional Reading and Watching

• More on the formulation of Theorem 2.1: [KS14]
– MinutePhysics’ Youtube video “When It’s OK to Violate Privacy”, 2019.

• A thorough proof of the impossibility of the “�rst attempt” privacy guarantee: [DN10] (see also
[KM11]).

• Why noisy sums can be used to �nd useful approximations to many natural procedures: [Kea93,
BDMN05, DMNS16].

6

https://www.youtube.com/watch?v=FE9ko2wtyeQ

Acknowledgement This lecture note is built on the lecture note by Adam Smith and Jonathan Ullman.

References

[BDMN05] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the
SuLQ framework. In Proceedings of the 24th Annual ACM Symposium on Principles of Database
Systems, PODS ’05, 2005. ACM.

[DMNS16] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. Journal of Privacy and Con�dentiality, 7(3), 2016.

[DN10] Cynthia Dwork and Moni Naor. On the di�culties of disclosure prevention, or the case for
di�erential privacy. Journal of Privacy and Con�dentiality, 2(1), 2010.

[Háj19] Alan Hájek. Interpretations of Probability. In Edward N. Zalta, editor, The Stanford Ency-
clopedia of Philosophy. Metaphysics Research Lab, Stanford University, fall 2019 edition,
2019.

[Kea93] Michael J. Kearns. E�cient noise-tolerant learning from statistical queries. In ACM Sympo-
sium on Theory of Computing. ACM, 1993.

[KM11] Daniel Kifer and Ashwin Machanavajjhala. No Free Lunch in Data Privacy. In SIGMOD,
2011.

[KS14] Shiva Prasad Kasiviswanathan and Adam D. Smith. On the ‘semantics’ of di�erential privacy:
A bayesian formulation. Journal of Privacy and Con�dentiality, 2014.

7

