
Algorithms for Private Data Analysis Spring 2021
Lecture 4: The De�nition of Di�erential Privacy

Steven Wu

1 De�ning “Privacy”

Now that we have seen di�erent types of reconstruction attacks, we will consider what it means to be
privacy-preserving. How should one de�ne privacy? The question isn’t new. Researchers in statistics,
computer science, and information theory have been tackling variations on it since the 1960’s [War65],
and a many algorithms and techniques were developed that resist speci�c suites of attacks.

However, our goal will be to �nd a general criterion we can use to reason about many di�erent
kinds of released information, and about a broad class of attacks. In fact, what we really want is a clear
sense in which we’ve prevented “all reasonable” attacks. Di�erential privacy provides one approach to
this conundrum. Before we get to it, however, it is helpful to see an example of something that does not
meet our desiderata.

k-Anonymity [Swe02] is one popular approach to reasoning about the privacy implications of
publishing statistical tables. It applies only to speci�c kinds of information, called generalized microdata.
This means a table of individual records, where each entry is either the original record’s entry (a speci�c
person’s real age, for example) or a set of possible values for that entry (often an interval, like 30–34).
Figure 1 gives an example of such a table with age and zip code data. The basic idea of k-anonymity is to
divide attributes into ‘non-sensitive’ attributes—assumed to be available to an attacker—and ‘sensitive’
ones—assumed to be unknown—and to ensure that every record matches at least k − 1 others in the
nonsensitive attributes. That is, given an integer k , a table is k-anonymous if, when we delete the sensitive
attributes and leave only the non-sensitive ones, each row appears at least k times.1 The table of Figure 1
is 4-anonymous.

independent instances of themselves, but with arbitrary external
knowledge. We discuss both types of composition in this paper.
The dual problem to designing schemes with good composition

properties is the design of attacks that exploit independent releases.
We call these composition attacks. A simple example of such an
attack, in which two hospitals with overlapping patient populations
publish anonymized medical data, is presented below. Composition
attacks highlight a realistic and important class of vulnerabilities.
As privacy preserving data publishing becomes more commonly
deployed, it is increasingly difficult to keep track of all the organi-
zations that publish anonymized summaries involving a given indi-
vidual or entity. Schemes that are vulnerable to composition attacks
will be consequently difficult to use safely.

1.1 Contributions
Our contributions are summarized briefly in the abstract, above,

and discussed in more detail in the following subsections.

1.1.1 CompositionAttacks onPartition-based Schemes
We introduce composition attacks and study their effect on a

popular class of partitioning-based anonymization schemes. Very
roughly, computer scientists have worked on two broad classes of
anonymization techniques. Randomization-based schemes intro-
duce uncertainty either by randomly perturbing the raw data (a
technique called input perturbation, randomized response, e.g., [37,
2, 17]), or post-randomization, e.g., [35]), or by injecting random-
ness into the algorithm used to analyze the data (e.g., [6, 30]).
Partition-based schemes cluster the individuals in the database into
disjoint groups satisfying certain criteria (for example, in k-anony-
mity [33], each group must have size at least k). For each group,
certain exact statistics are calculated and published. Partition-based
schemes include k-anonymity [33] as well as several recent vari-
ants, e.g., [28, 39, 40, 25, 41, 29, 10, 23].
Because they release exact information, partition-based schemes

seem especially vulnerable to composition attacks. In the first part
of this paper we study a simple instance of a composition attack
called an intersection attack. We observe that the specific proper-
ties of current anonymization schemes make this attack possible,
and we evaluate its success empirically.
Example. Suppose two hospitals H1 and H2 in the same city re-
lease anonymized patient-discharge information. Because they are
in the same city, some patients may visit both hospitals with sim-
ilar ailments. Tables 1(a) and 1(b) represent (hypothetical) inde-
pendent k-anonymizations of the discharge data from H1 and H2

using k = 4 and k = 6, respectively. The sensitive attribute here
is the patient’s medical condition. It is left untouched. The other
attributes, deemed non-sensitive, are generalized (that is, replaced
with aggregate values), so that within each group of rows, the vec-
tors of non-sensitive attributes are identical. If Alice’s employer
knows that she is 28 years old, lives in zip code 13012 and re-
cently visited both hospitals, then he can attempt to locate her in
both anonymized tables. Alice matches four potential records in
H1’s data, and six potential records in H2’s. However, the only
disease that appears in both matching lists is AIDS, and so Alice’s
employer learns the reason for her visit.
Intersection Attacks. The above example relies on two proper-
ties of the partition-based anonymization schemes: (i) Exact sensi-
tive value disclosure: the “sensitive” value corresponding to each
member of the group is published exactly; and (ii) Locatability:
given any individual’s non-sensitive values (non-sensitive values
are exactly those that are assumed to be obtainable from other, pub-
lic information sources) one can locate the group in which individ-
ual has been put in. Based on these properties, an adversary can

Non-Sensitive Sensitive
Zip code Age Nationality Condition

1 130** <30 * AIDS
2 130** <30 * Heart Disease
3 130** <30 * Viral Infection
4 130** <30 * Viral Infection
5 130** ≥40 * Cancer
6 130** ≥40 * Heart Disease
7 130** ≥40 * Viral Infection
8 130** ≥40 * Viral Infection
9 130** 3* * Cancer
10 130** 3* * Cancer
11 130** 3* * Cancer
12 130** 3* * Cancer

(a)
Non-Sensitive Sensitive

Zip code Age Nationality Condition
1 130** <35 * AIDS
2 130** <35 * Tuberculosis
3 130** <35 * Flu
4 130** <35 * Tuberculosis
5 130** <35 * Cancer
6 130** <35 * Cancer
7 130** ≥35 * Cancer
8 130** ≥35 * Cancer
9 130** ≥35 * Cancer
10 130** ≥35 * Tuberculosis
11 130** ≥35 * Viral Infection
12 130** ≥35 * Viral Infection

(b)

Table 1: A simple example of a composition attack. Tables (a) and (b) are 4-
anonymous (respectively, 6-anonymous) patient data from two hypothetical
hospitals. If an Alice’s employer knows that she is 28, lives in zip code
13012 and visits both hospitals, he learns that she has AIDS.

narrow down the set of possible sensitive values for an individual
by intersecting the sets of sensitive values present in his/her groups
from multiple anonymized releases.
Properties (i) and (ii) turn out to be widespread. The exact dis-

closure of sensitive value lists is a design feature common to all
the schemes based on k-anonymity: preserving the exact distribu-
tion of sensitive values is important, and so no recoding is usually
applied. Locatability is less universal, since it depends on the ex-
act choice of partitioning algorithm (used to form groups) and the
recoding applied to the non-sensitive attributes. However, some
schemes always satisfy locatability by virtue of their structure (e.g.,
schemes that recursively partition the data set along the lines of a
hierarchy that is subsequently used for generalization [23, 24], or
schemes that release the exact set of non-sensitive attribute vectors
for each group [39]). For other schemes, locatability is not perfect
but our experiments suggest that using simple heuristics one can
locate a individual’s group with high probability.
Even with these properties, it is difficult to come up with a theo-

retical model for intersection attacks because the partitioning tech-
niques generally create dependencies that are hard to model ana-
lytically. (If the sensitive values of the members of a group could
be assumed to be statistically independent of their non-sensitive
attribute values, then an analytic solution would be tractable; how-
ever, the assumption is does not fit the data we considered).

Experimental Results. Instead, we evaluated the success of in-
tersection attacks empirically. We ran the intersection attack on
two popular census databases anonymized using partition-based
schemes. We evaluated the severity of the attack by measuring the
number of individuals who had their sensitive value revealed. Our
experimental results confirm that partitioning-based anonymization
schemes including k-anonymity and its recent variants, !-diversity
and t-closeness, are indeed vulnerable to intersection attacks. Sec-
tion 3 elaborates our methodology and results.

Figure 1: A 4-anonymous table.

The idea behind this criterion is that it makes linkage attacks (like the Net�ix example from Lecture
1 [NS08]) harder to carry out—if an attacker has access to another table that contains some of the
non-sensitive attributes, then each record in a k-anonymous table will match at least k of the records in
the other table.

1Sweeney’s original notion [Swe02] was actually a bit more permissive: the condition did not have to hold simultaneously
for all non-sensitive attributes, but only for those subsets of them, called quasi-identi�ers, that were likely to apppear together
in other tables. The simpler notion is good enough for our discussion.

1

While k-anonymity is likely to make those speci�c attacks harder than they would be with raw data,
a k-anonyous table can still leak lots of individual-level information. We can glean lots of information
from the table in Figure 1: everyone in their 30’s has cancer; our friend Alice, who’s data we happen to
know is in the table, cannot have visited the hospital because of a broken leg; etc. Of course, this is a
toy example (and real hospital records don’t look like the example in the table) but it illustrates two
important points: 1. Defending against one type of attack isn’t su�cient, and 2. Criteria that limit the
form of the output (in this case, the number of occurrences of each vector of non-sensitive attributes) do
not necessarily constrain the information that is revealed.

Composition k-anonymity illustrates another important point, namely that when the same record is
included in two (or more) data sets that are anonymized separately, the combination of the two might
reveal far more than the two do individually [GKS08]. For example, consider the table of Figure 2.
Suppose we know that Alice’s record appears in both tables, and that she is 28 years old and lives in zip
code 13012. Neither table on its own pins down her condition exactly (each one narrows it down to a
few posibilities), but taken together they pin it down exactly.

This problem is known as composition—what happens when many di�erent pieces of information
are revealed about me?

independent instances of themselves, but with arbitrary external
knowledge. We discuss both types of composition in this paper.
The dual problem to designing schemes with good composition

properties is the design of attacks that exploit independent releases.
We call these composition attacks. A simple example of such an
attack, in which two hospitals with overlapping patient populations
publish anonymized medical data, is presented below. Composition
attacks highlight a realistic and important class of vulnerabilities.
As privacy preserving data publishing becomes more commonly
deployed, it is increasingly difficult to keep track of all the organi-
zations that publish anonymized summaries involving a given indi-
vidual or entity. Schemes that are vulnerable to composition attacks
will be consequently difficult to use safely.

1.1 Contributions
Our contributions are summarized briefly in the abstract, above,

and discussed in more detail in the following subsections.

1.1.1 CompositionAttacks onPartition-based Schemes
We introduce composition attacks and study their effect on a

popular class of partitioning-based anonymization schemes. Very
roughly, computer scientists have worked on two broad classes of
anonymization techniques. Randomization-based schemes intro-
duce uncertainty either by randomly perturbing the raw data (a
technique called input perturbation, randomized response, e.g., [37,
2, 17]), or post-randomization, e.g., [35]), or by injecting random-
ness into the algorithm used to analyze the data (e.g., [6, 30]).
Partition-based schemes cluster the individuals in the database into
disjoint groups satisfying certain criteria (for example, in k-anony-
mity [33], each group must have size at least k). For each group,
certain exact statistics are calculated and published. Partition-based
schemes include k-anonymity [33] as well as several recent vari-
ants, e.g., [28, 39, 40, 25, 41, 29, 10, 23].
Because they release exact information, partition-based schemes

seem especially vulnerable to composition attacks. In the first part
of this paper we study a simple instance of a composition attack
called an intersection attack. We observe that the specific proper-
ties of current anonymization schemes make this attack possible,
and we evaluate its success empirically.
Example. Suppose two hospitals H1 and H2 in the same city re-
lease anonymized patient-discharge information. Because they are
in the same city, some patients may visit both hospitals with sim-
ilar ailments. Tables 1(a) and 1(b) represent (hypothetical) inde-
pendent k-anonymizations of the discharge data from H1 and H2

using k = 4 and k = 6, respectively. The sensitive attribute here
is the patient’s medical condition. It is left untouched. The other
attributes, deemed non-sensitive, are generalized (that is, replaced
with aggregate values), so that within each group of rows, the vec-
tors of non-sensitive attributes are identical. If Alice’s employer
knows that she is 28 years old, lives in zip code 13012 and re-
cently visited both hospitals, then he can attempt to locate her in
both anonymized tables. Alice matches four potential records in
H1’s data, and six potential records in H2’s. However, the only
disease that appears in both matching lists is AIDS, and so Alice’s
employer learns the reason for her visit.
Intersection Attacks. The above example relies on two proper-
ties of the partition-based anonymization schemes: (i) Exact sensi-
tive value disclosure: the “sensitive” value corresponding to each
member of the group is published exactly; and (ii) Locatability:
given any individual’s non-sensitive values (non-sensitive values
are exactly those that are assumed to be obtainable from other, pub-
lic information sources) one can locate the group in which individ-
ual has been put in. Based on these properties, an adversary can

Non-Sensitive Sensitive
Zip code Age Nationality Condition

1 130** <30 * AIDS
2 130** <30 * Heart Disease
3 130** <30 * Viral Infection
4 130** <30 * Viral Infection
5 130** ≥40 * Cancer
6 130** ≥40 * Heart Disease
7 130** ≥40 * Viral Infection
8 130** ≥40 * Viral Infection
9 130** 3* * Cancer
10 130** 3* * Cancer
11 130** 3* * Cancer
12 130** 3* * Cancer

(a)
Non-Sensitive Sensitive

Zip code Age Nationality Condition
1 130** <35 * AIDS
2 130** <35 * Tuberculosis
3 130** <35 * Flu
4 130** <35 * Tuberculosis
5 130** <35 * Cancer
6 130** <35 * Cancer
7 130** ≥35 * Cancer
8 130** ≥35 * Cancer
9 130** ≥35 * Cancer
10 130** ≥35 * Tuberculosis
11 130** ≥35 * Viral Infection
12 130** ≥35 * Viral Infection

(b)

Table 1: A simple example of a composition attack. Tables (a) and (b) are 4-
anonymous (respectively, 6-anonymous) patient data from two hypothetical
hospitals. If an Alice’s employer knows that she is 28, lives in zip code
13012 and visits both hospitals, he learns that she has AIDS.

narrow down the set of possible sensitive values for an individual
by intersecting the sets of sensitive values present in his/her groups
from multiple anonymized releases.
Properties (i) and (ii) turn out to be widespread. The exact dis-

closure of sensitive value lists is a design feature common to all
the schemes based on k-anonymity: preserving the exact distribu-
tion of sensitive values is important, and so no recoding is usually
applied. Locatability is less universal, since it depends on the ex-
act choice of partitioning algorithm (used to form groups) and the
recoding applied to the non-sensitive attributes. However, some
schemes always satisfy locatability by virtue of their structure (e.g.,
schemes that recursively partition the data set along the lines of a
hierarchy that is subsequently used for generalization [23, 24], or
schemes that release the exact set of non-sensitive attribute vectors
for each group [39]). For other schemes, locatability is not perfect
but our experiments suggest that using simple heuristics one can
locate a individual’s group with high probability.
Even with these properties, it is difficult to come up with a theo-

retical model for intersection attacks because the partitioning tech-
niques generally create dependencies that are hard to model ana-
lytically. (If the sensitive values of the members of a group could
be assumed to be statistically independent of their non-sensitive
attribute values, then an analytic solution would be tractable; how-
ever, the assumption is does not fit the data we considered).

Experimental Results. Instead, we evaluated the success of in-
tersection attacks empirically. We ran the intersection attack on
two popular census databases anonymized using partition-based
schemes. We evaluated the severity of the attack by measuring the
number of individuals who had their sensitive value revealed. Our
experimental results confirm that partitioning-based anonymization
schemes including k-anonymity and its recent variants, !-diversity
and t-closeness, are indeed vulnerable to intersection attacks. Sec-
tion 3 elaborates our methodology and results.

Figure 2: A 6-anonymous table.

Form versus process (or syntax versus semantics) Perhaps the most important lesson we can
draw from the examples above is that, to come up with a general approach to privacy of statistical data,
it isn’t enough to restrict the form of the outputs we generate. k-anonymity speci�es a set of acceptable
outputs, but doesn’t substantially restrict how they are produced.

2 Di�erential Privacy

Let X be the set of all possible records for each individual. A dataset x is thus a multiset2 of values in X.
When the size n is �xed, we may think of it as a list x = (x1, ...,xn) ∈ Xn . (It is often conventient to
view it as a histogram, that is, a function X → N that counts the number of occurrences of each possible
record in X. We will return to this view later; for now, we’ll stick with lists.)

A Thought Experiment The main idea of DP is to consider a thought experiment in which we
compare how an algorithm behaves on a data set x with the way it behaves on a hypothetical dataset x′
in which one person’s record has been replaced with some other value.

2A multiset is a set where we keep track of how many times each element appears.

2

-2.5 0 2.5 5 7.5 10

0.05

0.1

0.15

0.2

0.25

Figure 3: Two distributions P andQ that satisfy: for every event E, P(E) ≤ e1/4Q(E) andQ(E) ≤ e1/4P(E).

We say two data sets are neighbors if they di�er in one individual’s record. A simple way to model this
is to think of the size n of data sets as �xed, and to consider two data sets adjacent if one record has
been replaced with a di�erent value. For example, if they di�er in index i , we would have:

x = (x1,x2,,xi−1, xi , xi+1, ...,xn)
x′ = (x1,x2,,xi−1, x ′i , xi+1, ...,xn)

Now consider a randomized algorithm A. For each possible input data set x, its output is a random
variable A(x). We say an algorithm is di�erentially private if running the algorithm on two neighboring
data sets yields roughly the same distribution on outcomes. Speci�cally, we’ll ask that for every set E of
possible outcomes—for example, those outputs from a healthcare study that lead to individual i being
denied health insurance—the probability of an outcome in E should be the same under A(x) and A(x′),
up to a small multplicative factor. In other words, the algorithm’s outcomes should be about the same
whether or not individual i ’s real data was used.

De�nition 2.1 (ε-DP with �xed-size data sets). A randomized algorithm A : Xn → Y taking inputs in
Xn is ε-di�erentially private for size n data sets if, for every pair of neighboring data sets x, x′, for all
events3 E ⊆ Y:

P (A(x) ∈ E) ≤ eε · P (A(x′) ∈ E) . (1)

The de�nition of DP uses the parameter ε to control how far apart the distributions of A(x) and
A(x′) can be. For example, Figure 3 depicts two distributions that satisfy the criterion of Equation (1)
with ε = 1/4. As ε gets smaller, the algorithm’s output distributions can vary less. When ε = 0, the
algorithm leaks nothing at all—its output distribution must be the same for all inputs.

3 A First Example: Randomized Response

Let’s recall the randomized reponse mechanism from Lecture 1. Suppose that our data set consists of
a single bit xi ∈ {0, 1} for each of n individuals. Each person �rst �ips a fair coin (1/2 chance on each
side). If the �rst coin comes up “heads,” they report Yi = xi truthfully. If the �rst coin comes up “tails,”
they then �ip a second coin. If the second coin comes up “heads”, they report Yi = 1; otherwise they
report Yi = 0. The algorithm’s output is the list of values (Y1, ...,Yn). Let RRbasic denote the resulting
algorithm (spelled out in Algorithm 1).

We now show that RRbasic satis�es di�erential privacy.
3In this course, it is generally �ne to think of an event as any subset of the output set. In general, for uncountable output

sets like R, one restricts attention to a collection of “measurable” sets. Standard texts on probability discuss the issue in detail.

3

Algorithm 1: Basic Randomized Repsonse, RRbasic
Input: Data set of n bits: x = (x1,,xn) ∈ {0, 1}n
Output: Bits Y1, ...,Yn

1 for i = 1 to n do

2 Yi =

{
xi w.p. 3/4
1 − xi w.p. 1/4

;

3 return (Y1, ...,Yn)

Proposition 3.1. RRbasic is ε-di�erentially private for ε = ln(3).

Proof. Fix two neighboring data sets x and x′, and let i be the position in which they di�er (so that
xi , x ′i but x j = x ′j for all j , i) . First, consider a particular outcome y = (y1, ...,yn). Because we make
selections independently for each i , we have

P (RRbasic(x) = y) = P (Y1 = y1 | x1) · P (Y2 = y2 | x2) · · · P (Yn = yn | xn) (2)

When we compare this to the probability that RRbasic(x′) = y, only one of the terms in the product will
change. We thus get that

P (RRbasic(x′) = y)
P (RRbasic(x) = y)

=
P

(
Yi = yi | x

′
i
)

P (Yi = yi | xi)
(3)

This ratio is at most 3.
Now let’s take any subset E ⊆ Y = {0, 1}n . The probability that RRbasic(x) lies in E is just the sum

over y ∈ E of the probability that RRbasic(x) = y. We thus get

P (RRbasic(x) ∈ E) =
∑
y∈E

P (RRbasic(x) = y)
Eq . (3)
≤

∑
y∈E

eε ·P (RRbasic(x′) = y) = 3 ·P (RRbasic(x′) ∈ E) . (4)

This completes the proof. �

The proof that randomized response is di�erentially private uses a useful trick that is true quite
generally:

Exercise 3.2. Show that if the output space Y is discrete (so probabilities are just sums over individual
elements), then an algorithm A : Xn → Y ε-DP if and only if for every particular output a ∈ Y, we have
P (A(x) = a) ≤ eεP (A(x′) = a) (that is, neighboring data sets lead to each individual output with about
the same probability). Similarly, if the distributions of A(x) and A(x′) both have probability densities (on
R, say), show that it su�ces to have fx(y) ≤ eε fx′(y) for all possible outptus y, where fx(y) and fx′(y)
are the two probability densities.

Proposition 3.3. There is a procedure that, given the outputs Y1, ...,Yn from randomized response on input
x1, ...,xn , returns an estiamte A such that√√√√

E
©«
(
A −

n∑
i=1

xi

)2ª®¬ = O(
√
n) .

Exercise 3.4. Prove Proposition 3.3.

4

4 A Second Example: The Laplace Mechanism

Another natural way to add randomness to a computation is to simply add noise to the output of some
function f evaluated on the data. This function could just return a single real number (like a proportion
or a sum), or it could be something more complex that returns a vector in Rd (such as the roughly 3
billion statistics produced by the US Census Bureau from its decennial census).

When does adding noise satisfy di�erential privacy? How does the choice of the function f we
evaluate a�ect the amount of noise we must add? One basic idea is to look at how sensitive a function is
to a change in one of its input records. We measure this via the global sensitivity of f :

De�nition 4.1. Given a function f : Xn → Rd , we de�ne the global sensitivity of f in the `1 norm to be

GS f , `1 = sup
x,x′ neighbors in Xn

‖ f (x) − f (x′)‖1 . (5)

(We often drop the subcript `1, and write simply GS f .)

For some functions f , it is tricky to get our hands on the exact global sensitivity, and it is easier to
work with an upper bound. A gunction has global sensitivity at most ∆ (in the `1 norm) if for all pairs
of neighboring data sets x, x′ ∈ Xn :

‖ f (x) − f (x′)‖1 ≤ ∆ . (6)

The notation ‖ · ‖1 refers to the `1 norm of a vector, which is sum of the absolute values of the
vector’s entries. For example, ‖(1, 0,−3)‖1 = 4, and ‖(1, 1, 1, 1, 1, 1)‖1 = 6. In 1 dimension, the `1 norm is
just the absolute value.

Examples of global sensitivity A proportion f (x) = 1
n
∑n

i=1 φ(xi), where φ : X → {0, 1}, has global
sensitivity GS f =

1
n . The same is true if φ maps records to numbers in the interval [0, 1].

To take another example, consider a histogram: given a data set x ∈ Xn and a partition of X into d
disjoint sets B1, ...,Bd (think of these as “bins” or “types” of items in X), we count how many records
there are of each type. f (x) = (n1,n2, ...,nd) where nj = #

{
i : xi ∈ Bj

}
. So, for example, if we wanted

to compute the number of residents of each of the 50 US states from a census of the US population, we
would be asking a hstogram query. The global sensitivity of a histogram query is at most 2, regardless
of how many bins there are.

Exercise 4.2. Suppose we want to compute the average of a set of numbers known to lie in the interval
[0,R] on a data set of size n. What is the sensivitiy of the average?

The Laplace Mechanism If f has sensitivity ∆, we can satisfy ε-DP by adding noise from a Laplace
distribution with scale ∆

ε , independently to each entry of the output. The Laplace distribution, also called
the double exponential distribution, is sort of a pointy Gaussian (Fig.4). The mean-0, scale-1 Laplace has
density h(y) = 1

2e
−|y | for y ∈ R. This distribution has expected absolute value 1, and standard deviation

√
2. We can scale the distribution by a positive number λ > 0, to get the general form Lap(λ) with

density
Lap(λ) : a distribution on R with p.d.f. hλ(y) =

1
2λ exp(−|y |/λ)

Figure 4 illustrates the probability density function for a few values of λ. If we translate the distribution
to have mean µ, then the density becomes 1

2λ exp(−|y − µ |/λ).

5

-3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2

0.08

0.16

0.24

0.32

0.4

0.48

Figure 4: The probability density function of the Laplace distribution with λ ∈ {1, 2, 4, 7}.

The resulting algorithm (Algorithm 2) is called the Laplace mechanism4, and is a basic building
block for the design of many other di�erentially private algorithms. If used to estimate a proportion, it
produces far more accurate estimates than randomized response (for the same privacy budget).

Algorithm 2: Laplace mechanism ALap(ε, x)
Input: Data set x = (x1, ...,xn) ∈ Xn and parameter ε > 0.

1 Receive a query f : Xn → Rd . Let GS f denote its global sensitivity in the `1 norm;
2 return f (x) + (Z1, ...,Zd) where Zi ∼ Lap

(
GS f
ε

)
are i.i.d.

Note that instead of the actual global sensitivity GS f , we may use any upper bound ∆ ≥ GS f .

Theorem 4.3. The Laplace mechanism is ε-di�erentially private.

Proof. Fix two neighboring data sets x and x′ in Xn , and a query f : Xn → Rd . Let ∆ = GS f be the `1
global sensitivity of f . Let µ = f (x) and µ ′ = f (x′). We know that the `1 norm of µ − µ ′ is at most ∆.
Comparing the output distributions of ALap on x and x′ thus means comparing two Laplace distributions
that have been shifted relative to one another by µ − µ ′.

Because we add noise independently to each entry of the output, the density of the output at vector
y on input x can be written as a product:

hx(y) = ε
2∆e
− ε∆ |y1−µ1 | × ε

2∆e
− ε∆ |y2−µ2 | × · · · × ε

2∆e
− ε∆ |yd−µd | , (7)

which can be simpli�ed to hx(y) =
(ε
2∆

)d
e−

ε
∆ ‖y−µ ‖1 . If we look at the ratio of the densities for x and x′ at

the same output y, we get
hx′(y)
hx(y)

= e−
ε
∆ (‖y−µ

′ ‖1−‖y−µ ‖1). (8)

By the triangle inequality, the di�erence ‖y − µ‖1 − ‖y − µ ′‖1 is at most ‖µ − µ ′‖1, which is at most ∆.
We thus get:

hx′(y)
hx(y)

≤ e
ε
∆ ‖µ−µ

′ ‖1 ≤ e
ε
∆ ·∆ = eε . (9)

And that is enough to conclude the mechanism is ε-DP: For any measurable set E, we have Pr(ALap(ε, x) ∈
E =

∫
y∈E hx(y). So if the ratio of the densities is bounded everywhere by eε , then so is the ratio of the

probabilities of any given event E. �

4Here and elsehwere in the course, the term “mechanism”, inherited from literature on game theory, just means “algorithm”.

6

Thus, we can guarantee di�erential privacy by adding noise to the output of a function that scales
with the function’s sensitivity. Histograms, for example, �t the framework well: we can get away with
adding error whose expected magnitude is 2/ε to each of the bin counts, regardless of the number of
bins.

The following lemma provides useful bounds on the magnitude of the Laplace mechanism’s error.

Lemma 4.4.
1. If Z ∼ Lap(λ) is a Laplace-distributed random variable, we have

(a) E (|Z |) = λ
(b)

√
E (Z 2) =

√
2λ

(c) For every t > 0: P (|Z | > tλ) ≤ exp(−t).
2. Let Z1, ...,Zd are i.i.d. Lap(λ) random variables, and letM = max(|Z1 |, ..., |Zd |).

(a) E (‖(Z1, ...,Zd)‖1) = dλ
(b) For every t > 0: P (M > λ(ln(d) + t)) ≤ exp(−t).
(c) E (M) ≤ λ(ln(d) + 1).

Notice that the accuracy of the Laplace mechanism is pretty bad when ε is very small. Suppose we
want to estimate an fraction. If we set ε = 1/n, then the standard deviation of the Laplace mechanism is
√
2 · ∆

1/n =
√
2 (since ∆ = 1/n in this case). But the fraction can only take values between 0 and 1—the

noise is thus of larger magnitude than the “‘signal” one is trying to release. This feature is inherent.
Later in the course, we show that di�erentially private algorithms cannot yield any useful information
when ε < 1/n.

Exercise 4.5. Prove Lemma 4.4. To bound E (M) in the �nal statement, it may be useful to recall that
for any nonnegative random variable M , we have E (M) =

∫ ∞
x=0 Pr(M > x). This inequality allows us to

compute expectations in terms of “tail bounds”.

Summary

4.1 Key Points

• To reason about information leakage and con�dentiality we must look at the algorithms that
process the data, not only the form of the output.

• Di�erential privacy is one way to quantify how much an algorithm leaks about individual inputs.
It is parametrized by a positive real number ε , which bounds the amount of leakage.

• Randomized response and the Laplace mechanism satisfy ε-DP. For the same privacy budget, the
Laplace mechanism adds far less error.

Additional Reading and Watching

• The paper that de�ned di�ernetial privacy [DMNS06, DMNS16]
• A nontechnical introduction to DP [WAB+18]
• Dwork and Roth book, Chapter 2 [DR14]
• Videos from the MinutePhysics Youtube channel: “Protecting Privacy with MATH” and “When

It’s OK to Violate Privacy”, 2019.
• Tutorial talks by K. Ligett (NeurIPS 2016 Tutorial) and A. Smith (NASIT 2019 Tutorial).
• For further discussion of composition attacks, see [GKS08]

7

https://www.youtube.com/watch?v=pT19VwBAqKA
https://www.youtube.com/watch?v=FE9ko2wtyeQ
https://www.youtube.com/watch?v=FE9ko2wtyeQ
https://www.youtube.com/watch?v=hoEyvHCRRc8
https://www.youtube.com/watch?v=Xz7k0wIW9nc

Acknowledgement This lecture note is built on the lecture note by Adam Smith and Jonathan Ullman.

References

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Conference on Theory of Cryptography, TCC ’06, 2006.

[DMNS16] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. Journal of Privacy and Con�dentiality, 7(3), 2016.

[DR14] Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Di�erential Privacy. NOW
Publishers, 2014.

[GKS08] Srivatsava Ranjit Ganta, Shiva Prasad Kasiviswanathan, and Adam Smith. Composition
attacks and auxiliary information in data privacy. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’08, 2008. ACM.

[NS08] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse datasets.
In IEEE Symposium on Security and Privacy, 2008.

[Swe02] Latanya Sweeney. k-anonymity: A model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002.

[WAB+18] Alexandra Wood, Micah Altman, Aaron Bembenek, Mark Bun, Marco Gaboardi, James
Honaker, Kobbi Nissim, David O’Brien, Thomas Steinke, and Salil Vadhan. Di�erential
privacy: A primer for a non-technical audience. Vanderbilt Journal of Entertainment &
Technology Law, 21(1):209, 2018.

[War65] Stanley L. Warner. Randomized response: A survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

Appendix

A The function ex

We’ll be working with the quantity ex (often eε for DP algorithms) a lot. Here a few useful inequalities:
• For all x ∈ R, we have ex > 1 + x (and thus e−x ≥ 1 − x).
• As x → 0 (either positive or negative), we have ex = 1 + x + Θ(x2). As a consequence, we have:

◦ x ≥ 1 − e−x ≥ x −O(x2),
◦ 1

x ≥
1

ex−1 ≥
1
x −O(x

2), and
◦ 1

x ≤
1

1−e−x ≤
1
x +O(x

2).
You can double check the direction of inequalities and a sense of speci�c constants by using a

graphing app. For example, Figure 5 shows that 1 + x ≤ ex ≤ 1 + x + x2 ≤ 1 + 2x for x ∈ [0, 1].

8

0 0.25 0.5 0.75 1

0.4

0.8

1.2

1.6

2

2.4

2.8

Figure 5: The function ex (solid blue), seen here bounded below by 1 + x (green dashed) and bounded
above on [0, 1] by 1 + x + x2 (purple dashed) and 1 + 2x (red dashed).

9

