Algorithms for Private Data Analysis Spring 2021
Lecture 15: Factorization and Projection Mechanisms

Steven Wu

So far we’ve talked about linear query release as a natural and important problem that captures many
of the things a data collector would want to do with a sensitive dataset. However, with the lone exception
of the binary tree mechanism, we haven’t seen interesting algorithms for this problem except for adding
Laplace or Gaussian noise calibrated to sensitivity. Now we will see a variety of exciting algorithms for
query release. In this lecture we’ll focus on a natural framework for query-release algorithms based on
two ideas for reducing the error factorization and projection. These two tools are often combined in a
particular way, leading to what is called the matrix mechanism, which itself is the starting point for the
US Census Bureau’s algorithm for the 2020 Decennial Census. That term and a particular instantiation
of this approach originated in [LHR"10], the general approach has been studied in a number of concrete
instantiations in many different papers [HT10, BDKT12, NTZ16, ENU20] and we will cover a general
class of mechanisms that captures a lot of these specific instantiations.

1 Query Release Recap and Histograms

Let us recap the problem of linear query release and then introduce a different viewpoint on the problem
that will be useful for developing the framework. Recall that we start with a datasetx = (x1,...,x,) € X"
and we are given a set of linear statistics fi, ..., fxr where each query is of the form

fix) = % D ¢ilxy) for some ¢; : X — {0,1} (1)

Jj=1

Before we go on, let’s note a small differences between this formulation and what’ve said before: We
now normalize the queries so that we compute the average of ¢;(x;) = 1 rather than the sum. Because
we have defined differential privacy only for datasets of size n, we can think of n as “public” and can
freely convert between the two notations without any implications for privacy. Normalizing is largely
just a cosmetic difference, but it will make some of the concepts in future lectures easier to understand,
and it’s important not to forget about it in order to map what we say in this lecture to previous lectures.

Recall that our baseline algorithm for query release is the Gaussian mechanism, where we add
noise from a Gaussian distribution with noise scaled to the global £,-sensitivity: Given a set of queries
fi- -, fx, define the function

Fx) = (i(®),.... fi(x)) ()

and define the Gaussian mechanism
M(x) = F(x) + Z where Z ~ N(0, 0Trxr) (3)

where the noise variance ¢ has the form ¢? = ci 5A§ where

2vVk

, 2
Ay = max |[[F(x) - F(X')[l2 < — - max [|[F(u)|ls < — (4)
x~x'eX™ n ueX n

log(l/ %) is some scaling factor that depends only

is the global ¢, sensitivity of the set of statistics, and c? c:
on the privacy parameters, which we will suppress because the dependence on the privacy parameters
themselves is not particularly interesting for this lecture.

For this lecture, we’re also going to make a small change in how we measure the error, which will
again make things a little easier going forward. Instead of asking for the error to be small for every
query, we’ll ask for it to be small for the average query. Specifically, given answers a = (ay, . . ., ax), we

want to have y
k
kl/z ||F(X) a||2 = (% Zl(ﬁ(X) - ai)z) <« (5)

for as small an error & as possible. Note that dividing by 1/Vk allows us to put the error in the same
“units” as the maximum error over all queries. In other words, if the error for each query is at most «
then (5) is also at most a.

For the Gaussian mechanism, we can say that the error will be

(6)

c&akl/z
n

B (1o - M(X)Ilz)= (Ce,(SAz):O(

where we have used the fact that, for queries such as ours, A, is never larger than 2vVk/n.
This error rate of ~ Vk/n is what we think of as a baseline for any linear query release problem, and
is what we’re going to try to improve in this and the next several lectures.

Remark 1.1. Note that we are focusing on the Gaussian mechanism and (e, §)-differential privacy
because it gives better accuracy, let’s us work with the nicer Gaussian distribution, and avoid having two
parallel explanations of the same mechanism. Everything we are saying can be done with the Laplace
mechanism and (¢, 0)-differential privacy without any significant conceptual differences.

1.1 The Histogram Representation: Putting the Linear in Linear Queries

OK, now that we did all that somewhat painful recapping, let’s do it all again in different notation!
The reason we want to switch notation is that it will allow us to express linear queries in the language
of—surprise, surprise—linear algebra.

To do so, we’ll start by defining the histogram representation of a dataset. Given a dataset x =

(x1,...,xn) € X", we can represent the dataset as a normalized histogram that tells us how many times
each element u € X appears in the dataset. Specifically hy € RX and is defined as
#1:xi=u
(hx)u = {+} (7)

For example, if X = {1, 2,3} and x = (1, 3, 3, 2, 3) then hy é, 5%) Note that we can convert back and

forth between the dataset and the histogram,’ so they contain exactly the same information.
Remark 1.2. You may have noticed that the histogram can be huge even when the dataset is small.
For example, if n = 2000 and X = {0, 1}, then the dataset itself is just 60,000 bits (much less than a

megabyte), but the histogram representation has over a billion buckets (more than a gigabyte)! Thus, for
purposes of implementing algorithms in practice, we’d generally like to avoid switching to the histogram

IStrictly speaking, going from the histogram to the dataset loses information about the order of the items in the dataset,
but since the queries are symmetric and don’t depend on the order, we might as well think of the dataset as unordered anyway.

representation explicitlywhen implementing a mechanism, and think of it more as a tool for describing
mechanisms. The computational issues involved in the mechanisms we’re going to study are fascinating,
but for now we’re going to suppress them and focus only on the tradeoff between privacy and accuracy
without thinking too hard about computation.

If we are going to design mechanisms in terms of the histogram, we need to understand what
happens to the histogram when we change one element of the original dataset. In particular, this can
change at most two buckets of the dataset by at most 1/n each. Thus we have that for every pair of

neighboring datasets of size n
2

”hx - hx’”l <= (8)
n
The reason we like to use the histogram representation is that we can finally make sense of the
term linear queries—the reason they are called linear is becaue they are a linear function of the dataset’s
histogram. Specifically, given a single query f defined by a predicate ¢ : X — {0,1}, and X =
{uy,us, ..., Uy}, we can write

f(x) =v-hy where v = (¢(u1), .. ., @(um)) ©)

Then, given a set of queries fi, ..., fx, we can write
F(x) = Fhy where A; ; = ¢;(u;). (10)

Sometimes the hardest part of linear algebra is getting the dimensions right, so here we are writing hy
as an m X 1 column vector, and A is a k X m matrix. Thus, the answers are a k X 1 column vector whose
i-th row is the answer to the i-th query.

Another thing to note is that, in this matrix representation, there is really nothig special about
having functions ¢ output values in {0, 1}, and in general we can think about queries that output real
numbers in R. Really the only advantage of having the queries output in {0, 1} is that we can get easy
baselines for the sensitivity and have some natural notion of what “good” error bound is.

1.2 The Gaussian Mechanism in the Histogram Representation

In this notation we can write the Gaussian mechanism in a completely equivalent way as
Mg(x) = Fhy + Z where Z ~ N(0, 02T jxk) (11)

Since we’re now expressing the queries as a matrix F, we’d like to be able to express their sensitivity A,
in a language that makes sense for this linear algebraic viewpoint, so let’s see how we can write the
sensitivity of linear algebra as follows:

Az = max |[|F(x) - Fx')ll; (12)
x~x'e X"
= max |[F(hy —hy)ll; (13)
x~x'eX"n
< max |[F(hy —hy)ll; (14)
h,h/ eR™
b1l <2/
2
=—- max |[Fv||; (15)
N verR™m
vl <t
2 2
=— - (largest £, norm of any column of F) = — - ||F||; (16)
n n

where the notation ||F||;—; is just some fancy notation for the largest £, norm of any column of F.?
To make sure nothing magical is going on here, you can check that max, ¢ x ||F(u)|l; is just the largest
{>-norm of any colum of F, so the calculation of the sensitivity in (4) is no different from (16) but in our
new notation. For keeping the notation reasonable, we're going to use this fancy % - ||F|l1—2 notation to
denote the sensitivity of the queries, but it’s exactly the same as the ¢, sensitivity of the queries, so just
memorize that and don’t worry exactly what this funny notation is supposed to mean.

Given the above, we can set the variance of the noise to be o2 = cg’ sIIFll{_,, and recover the same
error guarantee we had before, but in different notation.

1
P

1

- k1/2

[[Fhy —MF(X)HZ) = E(||Z||2) <0 (Ce (17)

||F||1—>2)
9
n

To appreciate what we’ve all just been through, we have literally just changed the notation on
the Gaussian mechanism, so this is all a fancy way of explaining that we add noise to the queries
proportional to their £, sensitivity.

2 A Framework for Improving the Gaussian Mechanism

OK, we’re finally ready to see some ideas for improving the basic Gaussian mechanism. We’re going to
see three conceptually distinct ways of reducing the error, which can be mixed and matched with each
other. The first two can both be viewed as taking advantage of different types of structure in the queries,
and the latter two is a form of post-processing of the Gaussian mechanism that can actually improve the
error of the Gaussian mechanism dramatically in some cases.

2.1 Factorization

The first idea is called factorization, because we “factor” the mechanism into a differentially private
measurement phase followed by a reconstruction phase that is just a postprocessing of what we measured.
To get a feel for the idea, let’s consider two special cases. First, suppose we are asked to answer the
exact same query k times, so f; = --- = fi. Then, in our histogram representation, the query matrix
will be something like:

ey

Il
— e e
[

1
1

18
, (18)
1

S O O O
[Nl el =

where each row is a copy of the same query. Notice that, as long as the query is not the all-zero function,
then the largest £, norm of any column will be exactly Vk, so the Gaussian mechanism will add noise
proportional to Vk/n. Clearly this is wasteful, because we’re really only answering a single query
with sensitivity 1/n. In this example it’s clear what to do—use the Gaussian mechanism to answer just
the query fi, obtain an answer g, and then output the vector of k answers (a, . . ., a). Since we’re just
answering a single query, the error is proportional to 1/n, which is what it should be.

Although this idea is simple enough, the general principle is that we are measuring a single query f
and then performing a linear reconstruction of the answers to the remaining queries. The set of queries
we measure is described by a matrix M € R“*™ and the reconstruction is described by another matrix

2If you're curious, in general for p,q > 0 we can define the p — g operator norm of a matrix to be IFllp—q =
max |jy||, <1 [IFllg- The 2 — 2 norm is the most common special case, and is equal to the largest singular value of F.

R € R**¢, In the simple example above, the query we measure is just f; and the reconstruction matrix
maps a number to the vector containing k copies of that number. That is,

M=[11 0 0 1] (19)

=
I
[

All we are actually using here to make this a viable approach is the fact that RM = F. As long as we
have this, then our mechanism will have the form

Mg m(x) = RMhy + Z) = RMhy + RZ = Fhy + RZ (20)

In other words, we are just answering the queries F but with some alternative noise random variable RZ
rather than Z. Note that the Gaussian mechanism itself corresponds to the trivial factorization where
M = F and R = [so in that sense factorization can only help and never hurt.

Exercise 2.1. Express the binary tree mechanism from Lecture 9 as an instance of factorization. Specif-
ically, for the domain X = {1, ..., 8}, and the set of threshold queries f;(x) = % - # {j 1xj < t} for
t=1,...,8, write the matrix F, the matrix M describing the set of queries in the binary tree, and the
matrix R describing how to reconstruct the answers to the threshold queries.

For a given factorization RM = F, what is the error of the mechanism? To answer this question, we
need to understand the quantity

1

—HE(IRZIL) (21)

1
5 i 1P~ Mol

Recall that Z is from a Gaussian distribution where each coordinate is independent and has variance
o’ = O(cg s IM|Z_,,/n), so the lower the sensitivity of M the smaller the magnitude of Z will be. However,
multiplying by R can change the magnitude of the noise, and we need to understand what the noise is.
To this end, let’s write

R=| : (22)

where each r; is a vector. Observe that when we compute the answer to the i-th query, we are actually
just computing r;(Mhy + Z), so the distribution of the noise for that query is just (RZ); = r; - Z. Now
recall that if Z ~ N(0, 0°I), thenr; - Z ~ N(0, ||r;||50%) is a univariate Gaussian. Thus we have

E (RZ);) = |Irill*o” (23)

and we have

E(|RZ||,) < E (|RZ|2)"* = (24)

|
R
M~
S
p—
S —
S —
2
~
[\)

X 1/2

=| 2B ((RZ)?)) (25)
l:l b

=1>] ||rl-||§oz) (26)
k 1/2

o (Z ||ri||§) (27)
=1

(28)

Il
Q
—_——
el
~.
vH
N

Note that the double sum in the final quantity is the £, norm of the matrix if we ignore the fact that
it’s a matrix and treat it as a big vector of length k X £. This quantity has a name, and it’s called the
Frobenius norm of the matrix ||R||% = X; >; R; ;. Thus, putting everything back together, we can write

1

E(IRZ]lp) _ ce,sl[RIIFIIMIl:—2
k1/2

E k1/2 - k1/2n

IFh = M0l - @)

Since this might look like alphabet soup, let’s go back to our simple example fo repeating the
same query k times from (37). In this case the query matrix itself has ||F||;—, = k'/2, so the Gaussian
mechanism has error proportional to k'/2/n. After we do the factorization we get a new measurement
matrix with ||M||;_, = 1, and a reconstruction matrix with ||R||r = k!/2. Thus, when we plug this into
(29) we get that the error is proportional to 1/n.

Lastly, notice that there can be many different pairs R, M such that RM = F, and of course we should
chose the one that gives us the best error! Since we can describe the best error as being proportional to
IR||¢|IM|l;—2/k/2, we can just choose the factorization that minimizes this error! We can actually give a
name to the quantity that represents the best error we can achieve via this framework—the factorization
norm of F.

Definition 2.2. Given a matrix F € R**™ the factorization norm is defined as

IRIIF[IMl1 -2

RIE :RM = F} (30)

y(F) = min {
Using this notation, and considering the factorization mechanism that uses the optimal factorization

RM = F, we have the following theorem

Theorem 2.3. For every set of linear queries given by a matrix F € RK*™ | there is an (e, §)-differentially
private mechanism M that answers these queries with error

&0 " F
B #thx—M(x)nz) = o(”TY()) (1)

2.2 Approximation

The next avenue for improvement is to give up on the constraint that RM = F. Suppose we run the
factorization mechanism with an approximate factorization where RM = F + E for some “small” matrix
E? In this more general setting we have

Mg m(x) = RMhy + Z) = Fhy + Ehy + RZ (32)

So now we have two sources of error: the noise vector RZ and the error due to approximation Ehy.
Thus, the overall error can now be bounded as follows

1 [Eby[l2 E(IIRZ]|2)
E(W||Ehx+RZ||2) < T Li/2 (33)
Eh R||r|IM||1—
N dllz | cesIRIFIMI—2 (34)
k1/2 k1/2n
El[;— R||rIM]1—
< IElh—2 | ¢ slRIlFIM[li-2 (35)
kl/z kl/zn

where the first inequality is the triangle inequality and linearity of expectation, the second inequality is
our analysis of the noise added by then factorization mechanism, and the final inequality is our definition
of ||E||;—2 combined with the fact that ||hy||; = 1. To interpret this analysis, note that if every entry of E
is bounded by « in absolute value, then the additional error due to approximation is at most «.

One (somewhat boring) example where this kind of approximation is useful is when the queries are
approximately the same but not identical. This can naturally arise if we allow the queries to take values
that are arbitrary real numbers instead of values in {0, 1}. For example, if the query matrix is

lta 1xa 1xa 1xa 1zxa
F=|lta 1xa 1xa 1xa 1zxa (36)
lta 1xa 1xta 1xa 1zxa

then we can use the approximate factorization
1
R=|1 M=[11 0 0 1] (37)
1

to approximate this set of two queries as if it were a single query.

Remark 2.4. There are far more powerful examples of the benefits of approximation, although explain-
ing how they work is beyond the scope of this lecture. But the punchline is that there are examples of
sets of 2¢ queries where exact factorizaton cannot get error 2°4) /n, but approximate factorization can

get error .001 + 20(Vd) /n, which is an exponential improvement [TUV12].

As above, we can choose the factorization R, M to optimize this error term, trading off the two
sources of error.

Definition 2.5. Given a matrix F € R¥*™ the a-approximate factorization norm is defined as

IRIIF[IMl1—2

K1/2 |IRM - Flli—; < akl/Z} (38)

Yo(F) = min{

Using this notation, and considering the factorization mechanism that uses the optimal factorization
RM = F + E subject to the constraint ||E||;_,, < ak!/?, we have the following theorem

Theorem 2.6. For every set of linear queries given by a matrix F € R*™ and every a > 0, there is an
(&, 6)-differentially private mechanism M that answers these queries with error

Ce, 8 Ya(F)) (39)

k1/2 n

E (L”th - M(x)||2) -0 (a +

2.3 Projection

Now we’re going to look at a very different approach to improve the error of the mechanism, albeit one
that can be combined seamlessly with the factorization approaches we just described. The approach can
be described most easily wtih an example: Suppose the data domain is X = {1, 2,3} and we want to
answer the two non-trivial threhsold queries on a dataset in X". Written in matrix notation, this gives us

the linear queries.
F= [1 0 0] (40)

1 10

Notice that by construction, if a] and a;, are the true answers to the first and second queries respectively,
then we must have 0 < a] < a; < 1. However, when we add Gaussian noise to the answers, we will
obtain approximate answers a; and a, that may not satisfy these equations! In other words, we might
obtain inconsistent answers that are not the exact answers we would obtain from any real dataset.

We might not, in principle, care about having consistent answers,? enforcing that the answers be
consistent with the exact answers on some dataset can actually improve the error—in some cases quite
dramatically.

Knowing only about the definition of the queries (not the data itself) we have a set of consistent
answers C that represents all possible correct answers. Specifically

C = {a €RF:3heR" st ||hl; = 1anda = Fh} (41)

Remark 2.7. If you're astute, you’ll notice that the way we’ve defined C, it is not exactly the set of
all answers that can arise as the exact answers to some dataset of size n. The reason is that not every
histogram represents a dataset of size n. For example, if the query is a count, and n = 2, then the only
possible answers are {0, %, 1}, whereas C = [0, 1]. It’s more precise to say that C is the convex hull of
the set of answers that are consistent with some dataset. Note, however, that every set of answers that
are consistent with a dataset of size n lies in C, and every set of answers in C is consistent with those

given by some dataset of arbitrarily large size. Making C a convex set is useful for a number of reasons.

Given that we know the true answers that we’re looking for a* = Fhy are in the set C, we can
improve the error by projecting into C. That is, we define the projection operator

Mc(a) = arg min||a - a'll (42)

a’eC

and replace the answers a with a = II¢(a). There are two really important facts about the projected
answers a:

30ne reason that you might actually want consistent answers is to make the noisy answers easier to use and interpret in
further applications. For example if you have a program that expects to be given as input the number of users born before
1980, that program might crash or give nonsensical answers if you tell it the answer is -1.82.

« The error of a is never larger than a, because the true answers a* are in C and C is a closed convex
set (see Lemma 2.2 in Lecture 12). That is

la—a’lls < [la—a’ll (43)

Notice that this inequality holds for every vector a. So, if a is a random variable then projection
can’t increase the expected ¢, error.

« If a was obtained with (e, §)-differential privacy, then a = Il (a) is just a post-processing of a that
does not depend on the original dataset in any way, so the combined algorithm that returns a is
also (¢, §)-differentially private.

In other words, if what we care about is minimizing ¢, error, then projection is a cost free approach for
improving the answers. It can never make the error larger and does not increase the privacy parameters
in any way.

3 Answering Large Sets of Queries via the Projection Mechanism

While the (approximate) factorization mechanism is a useful tool for exploiting structure in queries,
some queries simply don’t have structure to exploit, and there are many families of queries where the
best factorization mechanism is to simply add Gaussian noise. In this section, we’ll see for the first
time that it’s possible to do much better than Gaussian noise for arbitrary linear queries—at when the
dataset and data domain are not too large—via projection. More specifically, we’ll see that projecting
the answers to be consistent with some dataset can not only never increase the error, it can sometimes
dramatically decrease the error!

Let x € X" be some arbitrary dataset with histogram h = h, € R™ and let F € R*¥™ be some
arbitrary set of linear queries. To keep the notation a bit simpler we’ll assume that the queries are counts
so that ||F||;; < k/2. We’ll analyze the following simple projection mechanism:

1. First use the Gaussian mechanism to release

a=Fh+ZforZ ~ N0, 0*Txr) (44)

2
cs,ék

n? °

and ¢? =

2. Second, output a = I[I¢(a) = argmin,, . ||a —a’|f,.

Since the Gaussian mechanism in the first step already guarantees that the error is at most C“’—nkl/z
we know that is an upper bound on the error becasue projection cannot increase the error. However,
we’ll see that we can get a different, and often much better bound by analyzing the projection step itself.

To start, let a = Fh be the true answers. Let ¢ be the line through a and a, and let p be the projection
of 4 onto £. The key observation is that p lies on the ray from a to infinity because otherwise p would
be a point in C that is closer to a than a, which violates the definition of the projection.

See the slides for a visualization.

Using this simple observation fact we can calculate

la—all} =(a-aa-a) (45)
<{a-a,p-a) (46)
=(a—aa—a) (47)
<l a,a-a)| +[(a,a—a) (48)
=(a,Z)| + [(a, Z)] (49)
<2 1‘1,1€acx|(v, 7)| (50)

where the last line follows from the fact that a and a are both points in C. Now, using the above and
rescaling we have that the expected {;-norm error is

(2 - maxyec [(v, Z))\ '/

~ E
g(la=alk) (2 - maxyec (v, Z)])"/? < | N0) (51)
kl/z - Z~N(0, 0T gxk) kl/Z - k
So the key quantity we need to analyze is now strange quantity
E max |{v,Z 52
Z~N(0,5%1) (UEC A >|) (52)

The key observation is that C is the convex hull of the m columns of the matrix F € Rkxm g0 these

columns ¢y, ..., cm € RF are the vertices of the set C. Thus, we have
E (max [{(v, Z>|) = E (max |(cj,Z)|) (53)
Z~N(0,0%T) \ veC Z~N(0,02T) \je[m]

Now, by assumption, for every column c;, we have ||c;j||; < k/2. Thus if we fix one of these columns,
we have that

(¢j,Z) ~ N(0,ka?) (54)

Therefore, we are looking for the expectation of the maximum absolute value of m (not independent)
Gaussian random variables, each with variance at most ko?. Using this fact, our analysis of the tails of
Gaussian random variables, and a union bound, we have that

E a LD = E max |{c;, Z SO(k172 og!/?) 55
z~N(o,0211)(rz?eé{|<v >|) Z~N(0,021[)(je[rr)z(]|<] >|) ? & m (55)

2
cg’b.k
n?

Now, plugging in the fact that ¢* = and plugging into (51) we get

(2 - maxyec [(v, ZY)\ '/

. E
E(”a_a”2)< Z~N(0, 0T ki)

1/2
cg,(slogl/zm /
k1/2

<
k n
To summarize, we have the following theorem:

Theorem 3.1 ([NTZ16]). For any set of linear queries F € R¥*™ with every entry in [—1, 1], the projection
mechanism has expected £,-norm error

1/2
O(M)/
n

10

Interpreting the Bound. Let’s compare this bound to what we got for the standard Gaussian

.) L) . skV/?))
mechanism without projection, which gave error ~ = >~ On the downside, the standard Gaussian

mechanism has error going to 0 at a rate of about 1/n whereas our analysis of the projection mechanism
only has error going to 0 at a rate of about 1/n'/2. So the new analysis only helps when n is relatively
small.

However, suppose n < k'/2. Then the Gaussian mechanism will give error that is > 1, which means
the noise in the answers is dramatically larger than the range of the answers, which is between —1 and
1, so we seemingly get nothing useful out of the Gaussian mechaism. However, after we project, as long
asn > logl/ % m, we actually get answers with error going to 0!

But wait, doesn’t that mean that, as long as n > 10g1/ % m, we can answer an arbitrarily large number
of queries with error independent of the number of queries, and going to 0 as n goes to co? Heck yes it
does!

Now, what to make of this condition that n > logl/ 2 m. Well, for the first time we have some explicit
requirement that the data comes from a bounded domain. Up until now nothing actually precluded
us from considering a dataset consisting of, say, all real numbers. However, the dependence on the
domain size isn’t too bad. For example, if the data domain is X = {0, l}d, meaning every user answers d
yes/no questions, then m = 2¢ and logl/2 m = d"/?, so the requirement is that n has to be at least some
polynomial in the dimensionality of the data. That is a significant requirement, but it’s not so bad, and
can often be a dramatically weaker requirement than n being polynomial in the number of queries.

Additional Reading and Watching

« A very impressive line of work has shown that exact factorization mechanisms give approximately
optimal error for any set of linear queries in the parameter regime where n is large [HT10, BDKT12,
NTZ16]. The simplest proof of this fact appears in [ENU20], which in particular shows that exact
factorization mechanisms are optimal among all mechanisms that add the same noise distribution
independently of the dataset x.

« The idea of using projection to improve the error was first described explicitly in [BCD*07] and
[HRMS10]. It was first shown to give dramatically improved error for any family of linear queries
in the regime where n is somewhat small by [NTZ16].

Acknowledgement This lecture note is taken from the course material developed by Adam Smith
and Jonathan Ullman.

References

[BCD*07] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry, and Kunal
Talwar. Privacy, accuracy, and consistency too: a holistic solution to contingency table
release. In Proceedings of the 26th Annual ACM Symposium on Principles of Database Systems,
PODS 07, 2007. ACM.

[BDKT12] Aditya Bhaskara, Daniel Dadush, Ravishankar Krishnaswamy, and Kunal Talwar. Uncondi-
tional differentially private mechanisms for linear queries. In Proceedings of the 44th Annual
ACM Symposium on Theory of Computing, STOC *12, 2012.

11

[ENU20]

[HRMS10]

[HT10]

[LHR*10]

[NTZ16]

[TUV12]

Alexander Edmonds, Aleksandar Nikolov, and Jonathan Ullman. The power of factorization
meisms in local and central differential privacy. In ACM Symposium on the Theory of
Computing, STOC 20, 2020. https://arxiv.org/abs/1911.08339.

Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the accuracy of
differentially private histograms through consistency. Proceedings of the VLDB Endowment,
3(1), 2010. https://arxiv.org/abs/0904.0942.

Moritz Hardt and Kunal Talwar. On the geometry of differential privacy. In Proceedings of
the 42nd ACM Symposium on Theory of Computing, STOC, 2010.

Chao Li, Michael Hay, Vibhor Rastogi, Gerome Miklau, and Andrew McGregor. Optimizing
linear counting queries under differential privacy. In Proceedings of the twenty-ninth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, 2010.

Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential privacy: The
small database and approximate cases. SIAM J. Comput., 45(2):575-616, 2016.

Justin Thaler, Jonathan Ullman, and Salil P. Vadhan. Faster algorithms for privately releasing
marginals. In 39th International Colloquium on Automata, Languages, and Programming -,
ICALP ’12, 2012. Springer.

12

https://arxiv.org/abs/1911.08339
https://arxiv.org/abs/0904.0942

