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1 Advanced Composition of Approximate DP

In this lecture, we show that (ε,δ )-di�erential privacy enables a stronger form of composition, in which
the ε parameter increases only with the square root of the number of stages of the composition.

Consider an algorithm A that consists of the adaptive composition of k algorithms, each of which is
(ε,δ )-DP:
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Previously, we argued that if each individual algorithm is (ε, 0)-DP, then the composition of all k
algorithms is (at worst) (kε, 0)-DP. That is the best one can hope to prove for (ε, 0)-DP, but the relaxation
to (ε,δ ) gives us a di�erent type of guarantee:

Theorem 1.1 (Strong Composition). For all ε,δ ≥ 0 and δ ′ > 0, the adaptive composition of k algorithms,
each of which is (ε,δ )-di�erentially private, is (ε̃, δ̃ )-di�erentially private where

ε̃ = ε
√

2k ln(1/δ ′) + kε e
ε−1
eε+1 and δ̃ = kδ + δ ′. (1)

Let’s get a feeling for the asymptotics here. When ε is not too big (say, at most 1), the quantity
eε−1
eε+1 is close to ε/2, so the �nal privacy parameter ε̃ is Θ(ε

√
k ln(1/δ ) + ε2k) if we take δ ′ = δ . Suppose

we want this �nal privacy guarantee to be at most 1, then we need ε2k < 1. In that range, we have
ε
√
k > ε2k , so

ε̃ = Θ
(
ε
√
k ln(1/δ )

)
when ε < 1/

√
k .

Contrast this with so-called basic composition (from Lecture 9), which shows that the adaptive composi-
tion of k mechanisms that are (ε,δ )-DP is (kε,kδ )-DP. When k > ln(1/δ ), strong compositon provides a
much tighter bound (see Figure 1 for an example). This is crucial when we analyze iterative algorithms
that have many stages, as with the di�erentially private gradient descent methods we will see later.

For example, consider the task of approximating a set ofd count queries. Absent a special relationship
between the queries, the global `1 sensitivity of the vector of counts is d and so the Laplace mechanism
adds noise Θ(d/ε) to each query’s answer. The Gaussian mechanism from last lecture would add noise
of expected magnitude only Θ(

√
d ln(1/δ )/ε) because the `2 sensitivity of the vector is

√
d .

However, we can alternately view the Laplace mechanism on the whole vector as the composition of
d separate instances of the Laplace mechanism—one for each query. If we ensure each one is (ε ′, 0)-DP,
then strong composition implies that the whole algorithm is (ε,δ )-DP for ε = Θ(ε ′

√
k ln(1/δ ). Setting
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Figure 1: Bounds on the privacy parameter obtained for the composition of k mechanisms, each of which is
(ε, 0)-DP for ε = 0.01. The horizontal axis represents the number k of mechanisms. The blue (straight) curve
shows the bound kε given by basic composition, while the red curve shows the value ε̃ given by Theorem 1.1 with
δ ′ = 10−6.

ε ′ = ε√
k ln(1/δ )

, we see that the Laplace mechanism satis�es (ε,δ )di�erential privacy with a smaller

amount of noise—the same Θ(
√
d ln(1/δ )/ε) bound we get from the Gaussian mechanism!

Quantitatively Tighter Bounds The bound in Theorem 1.1 provides clear asymptotics, but is not
always tight. First, we’ll see from the proof that the dominant term in the bound on ε̃ is actually a generic
bound on the tails of the binomial distribution; plugging in exact bounds can improve the constant
terms.

There are also now many results that yield tighter bounds for the composition of speci�c mechanisms
or classes of mechanisms. These have proven crucial for understanding algorithms with many stages of
a particular form, such as stochastic gradient descent (discussed next lecture). For now, though, we will
try to see how to prove the simple, general bound of Theorem 1.1.

2 Privacy Loss as a Random Variable

Given a randomized algorithm A and two possible inputs x and x′, de�ne the privacy loss on output y
to be the “log-odds ratio”, that is, the log of the ratio of the likelihoods of y under x and x′:

Ix,x′(y)
def
= ln

(
P (A(x) = y)
P (A(x′) = y)

)
. (2)

Last lecture, we showed (Lemma 1.4) that if, for every pair of neighboring data sets x, x′,

P
Y←A(x)

(
Ix,x′(Y ) > ε

)
≤ δ ,

then the mechanism A is (ε,δ )-DP.
Now when A consists of the adaptive composition of k mechanisms, we can write the output as a

sequence y = (y1,y2, ...,yk ). We do not want to assume anything about the way that the j-th algorithm
Aj is chosen based on y1,y2, ...,yj−1. Somewhat surprisingly, we don’t have to! We can break up the
probability of seeing the sequence y as a product

P (A(x) = y1, ...,yk ) = P (A1(x) = y1) × P (A2(x,y1) = y2) × · · · × P (Ak (x,y1, ...,yk−1) = yk ) ,

which allows us to write the privacy loss as a sum:
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Ix,x′(y1, ..,yk ) =
k∑
j=1

ln
(
P

(
Aj (x,y1, ...,yj−1) = yj

)
P

(
Aj (x′,y1, ...,yj−1) = yj

) ) . (3)

The important observation is that in each term of this sum, we are conditioning on the same previous
outputsy1, ...,yj−1 in the numerator and denominator. Regardless of howAj is chosen, we are comparing
outputs of the same algorithm Aj on both outputs.

Basic composition for (ε, 0)-DP follows from the fact that for such mechanisms each term in the
sum (3) is at most ε , so the sum is at most kε .

To prove the strong composition theorem for (ε,δ )-DP, we want to take advantage of the fact that
there is some cancelation in this sum. We know (roughly) that each term is contained in the interval
[−ε, ε] with high probability. But it turns out that their average is generally at most ε2. When many of
them are added, that is the behavior which dominates.

2.1 Privacy Loss Distributions for Some Representative Mechanisms

To get a sense of that, we can compute this privacy loss for a few example mechanisms, and how it is
distributed.

Gaussian Noise suppose each Aj is an instance of the Gaussian mechanism from last lecture. The
proof of Theorem 2.1 shows that the log-odds ratio is itself normally distributed, namely when
Y is the output of the algorithm under data set x, we have Ix,x′(Y ) ∼ N

(
∆2

2σ 2 ,
∆2

σ 2

)
. We chose

σ = ∆
√

2 ln(1/δ )/ε , so the privacy loss for this mechanism has expectation ε2 · 1
4 ln(1/δ ) .

Randomized Response Let’s look at the example of randomized response from Lectures 1 and 4. Each
input bit xi is randomized with a value

Yi =

{
xi w.p. eε

eε+1 ,

1 − xi w.p. 1
eε+1 .

For every two neighboring datasets x, x′, the privacy loss Ix,x′(y) is therefore ε with probability
eε

eε+1 , and −ε with probability 1
eε+1 . It’s expectation is ε · e

ε−1
eε+1 = Θ

(
ε2)—again, we see the same

scaling.

Name and Shame Recall the name and shame algorithm NSδ from Lecture 5, which outputs each
person’s raw data with probability δ . If data sets x, x′ di�er in person i’s data, the privacy loss is
+∞ when person i’s data is released, and 0 when it is not. The expectation of this privacy loss is
∞, but only due to the small probability event in which there is a catastrophic failure of secrecy.

We’ll see below that these three behaviors are representative—every (ε,δ ) di�erentially private
algorithm has privacy loss that is roughly ε2 in expectation, as long as we �rst set aside some event of
probability at most δ .

Exercise 2.1. What is the distribution of the privacy loss Ix,x′(Y ) when A is the Laplace mechanism in
one dimension? Show that its expectation is Θ(ε2).
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3 Proving Strong Composition

3.1 The Simulation Lemma: Reducing to Leaky Randomized Response

To get a handle on the privacy loss, we’ll actually show that once we �x two neighboring data sets, every
(ε,δ )-DP algorithm’s behavior is captured by a very simple “leaky” variant of randomized response.

If X and Y are random variables taking values in the same set (and with probabilities de�ned
for the same collection of events), we say X ≈ε,δ Y if for every event E: PX (E) ≤ eεPY (E) + δ and
PY (E) ≤ eεPX (E) + δ .

We would like to characterize this relation in simpler terms. As a starting point, let’s try to imagine
the simplest pair of random variables that satis�es the relationship. It seems like we need one type
of outcome to capture the δ additive di�erence in probabilities, and another type that captures the eε
multiplicative change. Consider the following two special random variables, U and V , taking values in
the set {0, 1, “I am U”, “I am V”} with the probabilities

Outcome PU PV

0 eε (1−δ )
eε+1

1−δ
eε+1

1 1−δ
eε+1

eε (1−δ )
eε+1

“I am U" δ 0
“I am V" 0 δ

Lemma 3.1 (Simulation Lemma for (ε,δ )-DP). For every pair of random variablesX ,Y such thatX ≈ε,δ Y ,
there exists a randomized map F such that F (U ) ∼ X and F (V ) ∼ Y .

Exercise 3.2. Prove the Simulation Lemma. We provide the following pictorial hint:
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Figure 2: The “proof" of Lemma 3.1

It is ok to assume that X and Y take values in a discrete set.
To proceed, �rst handle the case where δ = 0. You have to �nd, for each z, the probabilities that F

outputs z on inputs 0 and 1. Call these probabilities F (z |0) and F (z |1). What linear combinations of these
two variables should equal PX (z) and PY (z) respectively? Solve for F (z |0) and F (z |1). What assumption
allows you to be sure that the resulting numbers can be taken to be probabilities?

To handle the case where δ > 0, start by proving that the probabilities of areas A and B are at most
δ . Now proceed under the assumption that both of them have area exactly δ . In that case, you can write
PX = δPA + (1 − δ )P ′x and PY = δPB + (1 − δ )P ′y , where PA, PB , P

′
x ,andP

′
y are probability distributions

and P ′x , P
′
y satisfy P ′x ≈(ε,0) P

′
y . You can generate PA and PB from the inputs “I am U ” and “I am V ”, and

use what you learned in the case δ = 0 to generate P ′x and P ′y under appropriate distributions on 0 and 1.
Finally, extend this solution to handle the general case.

We can now proceed to the proof of Strong Composition (Theorem 1.1).
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Fix a sequence of k mechanismsAj , each of which takes a data set inXn as well as a partial transcript
y1, ...,yj−1 (abbreviated ®y j−1

1 ) such that, for every partial transcript, Aj (·; ®y j−1
1 ) is (ε,δ )-di�erentially

private. Also, �x two data sets x, x′ that di�er in one entry.
For every partial transcript ®y j−1

1 , we have Aj (x; ®y j−1
1 ) ≈ε,δ Aj (x′; ®y j−1

1 ) and so there exists a random-
ized map F

®y j−1
1

such that F
®y j−1

1
(U ) and F

®y j−1
1
(V ) have the same distributions as Aj (x; ®y j−1

1 ) and Aj (x′; ®y j−1
1 ),

respectively.
This allows use to show the �rst important claim:

Claim 3.3. There is a randomized map F ∗ such that the composed mechanism A satis�es:

A(x) ∼ F ∗(U1, ...,Uk ) whereU1, ...,Uk ∼i .i .d . U and (4)
A(x′) ∼ F ∗(V1, ...,Vk ) where V1, ...,Vk ∼i .i .d . V . (5)

Proof. Consider the algorithm:

Algorithm1: F ∗(z1, ..., zk ):
1 for j = 1 to k do
2 yj ← F

®y j−1
1
(zj ) ;

3 return (y1, ...,yk ).

Since F
®y j−1

1
(Uj ) has the same distribution as Aj (x; ®y j−1

1 ) for each stage j, the overall distribution of
F ∗(U1, ...,Uk ) is the same as A(x) (and similarly for x′ when the inputs are i.i.d. copies of V ). �

To prove that A is ε̃, δ̃ -di�erentially private, it su�ces, by closure under postprocessing, to prove
that (U1, ...,Uk ) ≈ε̃, δ̃ (V1, ...,Vk ). We are almost done!

3.2 Strong Composition for Leaky Randomized Response

Claim 3.4. (U1, ...,Uk ) ≈ε̃, δ̃ (V1, ...,Vk ) where ε̃, δ̃ are as in Theorem 1.1.

Proof. We’ll consider two “bad events”: B1 and B2. The �rst, B1, is when we see a clear signal that the
input was drawn according to U :

B1 = {®z : at least one zj is “I am U”}. (6)

If ®z is distributed as U1, ...,Uk , then the probability of B1 is exactly 1 − (1 − δ )k ≤ kδ .
If ®z ∼ U1, ...,Uk , then conditioned on B̄1,u not occurring, we have ®z ∈ {0, 1}k . The probability of ®z is

nonzero under both U and V , and we can compute the odds ratio by taking advantage of independence:

ln
(
PU (®z)

PV (®z)

)
=

∑
j

ln
(
PU (zj )

PV (zj )

)
=

∑
j

ln
(
(1 − δ )eε (1−zj )/(eε + 1)
(1 − δ )eε (zj )/(eε + 1)

)
=

∑
j

ε(−1)zj .

This log odds ratio is thus a sum of bounded, independent random variables under distribution U , with
expectation

E
®z∼(U1, ...,Uk )

(
PU (®z)

PV (®z)

���B̄1

)
= kε · E

(
(−1)U

���U ∈ {0, 1}) = kε eε − 1
eε + 1

.
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By the Cherno� bound (see appendix), for any t > 0 we have

Pr
®z∼U1, ...,Uk

©«
ln

(
PU (®z)

PV (®z)

)
> ε̃︸             ︷︷             ︸

event B2

���B̄1

ª®®®®®¬
≤ e−t

2/2 where ε̃ def
= kε

eε − 1
eε + 1

+ tε
√
k .

Let B2 be the event that
{
®z ∈ {0, 1}k : ln

(
PU (®z)
PV (®z)

)
> kε e

ε−1
eε+1 + tε

√
k
}
. Note that conditioned on B̄1 ∩ B̄2,

the ratio of PU (®z) to PV (®z) is bounded. Hence, for any event E,

PU (E ∩ B̄1 ∩ B̄2) ≤ e ε̃PV (E ∩ B̄1 ∩ B̄2) ≤ e ε̃PV (E) .

This allows us to show the indistinguishability condition we want:

PU (E) ≤ PU (E ∩ B̄1 ∩ B̄2) + PU (B1) + PU (B2 |B̄1)PU (B̄1)

≤ e ε̃PV (E) + kδ + e
−t 2/2 .

Setting t =
√

2 ln(1/δ ′) completes the proof of Claim 3.4 and also of Theorem 1.1. �

Exercise 3.5. Use the proof strategy from the previous theorem to show that the composition of an
(ε1,δ1)-DP algorithm with a (ε2,δ2)-DP algorithm is (ε1 + ε2,δ1 + δ2)-DP.

Additional Reading and Watching

The �rst version of the strong composition theorem appeared in [DRV10]. Our presentation is based on
Kairouz et al. [KOV15], as well as Dwork and Roth [DR14, Sections 3.5.1–2]. The characterization of
(ε,δ ) indistinguishability of Lemma 3.1 is due to [KOV15]. Their proof is based on a much more general
result of Blackwell (1953).

There are now quite a few techniques to get tighter analyses of the for the adpative composition of
speci�c algorithms. Examples include concentrated DP [DR16, BS16, BDRS18], Renyi DP [Mir17], and
Gaussian DP [DRS19]. That literature continues to evolve quickly.

Acknowledgement This lecture note is built on course material developed by Aaron Roth, Adam
Smith, and Jonathan Ullman.
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Appendix

“Cherno� bounds” are a family of concentration inequalities for sums of independent random variables.
A useful example is the following:

Lemma .6. Let X1, ...,Xn be i.i.d. random variables taking values in [0, 1]. Let X denote their sum and let
µ = E (Xi ) (so that E (X ) = µn. Then,

• For every δ ≥ 0, P (X > (1 + δ )µn) ≤ e−δ
2µn/3

• For every δ ∈ [0, 1], P (X < (1 − δ )µn) ≤ e−δ
2µn/2.

In particular, for every t > 0, the probability that |X − µn | ≥ t
√
n is at most 2 exp(−t2/3).
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